用零球面手段表征全形函数

N. P. Volchkova, Vit. V. Volchkov
{"title":"用零球面手段表征全形函数","authors":"N. P. Volchkova, Vit. V. Volchkov","doi":"10.1134/s1055134424030076","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We continue to study the holomorphy problem for functions whose contour integrals over\ncircles vanish. We consider the case in which a function <span>\\(f \\)</span> is defined on a deleted ball <span>\\(\\mathcal {D} \\)</span> in <span>\\(\\mathbb {C}^n\\)</span>\n(without its center) and integrate over all spheres of two fixed radii inside <span>\\(\\mathcal {D} \\)</span>. For <span>\\(f\\in C^{\\infty }(\\mathcal {D}) \\)</span>, we find conditions on the radii and size of\n<span>\\(\\mathcal {D} \\)</span> implying that <span>\\(f \\)</span> is a holomorphic function. We also show that these\nconditions cannot be weakened in the general case.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Holomorphic Functions by Zero Spherical Means\",\"authors\":\"N. P. Volchkova, Vit. V. Volchkov\",\"doi\":\"10.1134/s1055134424030076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We continue to study the holomorphy problem for functions whose contour integrals over\\ncircles vanish. We consider the case in which a function <span>\\\\(f \\\\)</span> is defined on a deleted ball <span>\\\\(\\\\mathcal {D} \\\\)</span> in <span>\\\\(\\\\mathbb {C}^n\\\\)</span>\\n(without its center) and integrate over all spheres of two fixed radii inside <span>\\\\(\\\\mathcal {D} \\\\)</span>. For <span>\\\\(f\\\\in C^{\\\\infty }(\\\\mathcal {D}) \\\\)</span>, we find conditions on the radii and size of\\n<span>\\\\(\\\\mathcal {D} \\\\)</span> implying that <span>\\\\(f \\\\)</span> is a holomorphic function. We also show that these\\nconditions cannot be weakened in the general case.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134424030076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134424030076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们继续研究其过圆轮廓积分消失的函数的全形问题。我们考虑这样一种情况:一个函数(f)定义在(\mathbb {C}^n\) (不含其中心)的一个删除球\(\mathcal {D}\) 上,并且对\(\mathcal {D}\) 内所有两个固定半径的球进行积分。对于(f\in C^{in\fty }(\mathcal {D}) \),我们找到了关于(mathcal {D} \)的半径和大小的条件,这意味着(f\)是全态函数。我们还证明了这些条件在一般情况下不能被削弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Holomorphic Functions by Zero Spherical Means

Abstract

We continue to study the holomorphy problem for functions whose contour integrals over circles vanish. We consider the case in which a function \(f \) is defined on a deleted ball \(\mathcal {D} \) in \(\mathbb {C}^n\) (without its center) and integrate over all spheres of two fixed radii inside \(\mathcal {D} \). For \(f\in C^{\infty }(\mathcal {D}) \), we find conditions on the radii and size of \(\mathcal {D} \) implying that \(f \) is a holomorphic function. We also show that these conditions cannot be weakened in the general case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信