通过观测具有线性湍流扰动的解来识别差分方程

A. A. Lomov
{"title":"通过观测具有线性湍流扰动的解来识别差分方程","authors":"A. A. Lomov","doi":"10.1134/s1055134424030064","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We study the Prony identification problem for coefficients of an autonomous difference\nequation by observations of noisy solutions with unknown additive perturbations from an arbitrary\nlinear manifold. We establish a “projectivity” property of the variational objective function. For\ntwo main types of equations, we obtain criteria and sufficient conditions for identifiability.\n</p>","PeriodicalId":39997,"journal":{"name":"Siberian Advances in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Difference Equations by Observations of Solutions with Perturbations from a Linear Manifold\",\"authors\":\"A. A. Lomov\",\"doi\":\"10.1134/s1055134424030064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We study the Prony identification problem for coefficients of an autonomous difference\\nequation by observations of noisy solutions with unknown additive perturbations from an arbitrary\\nlinear manifold. We establish a “projectivity” property of the variational objective function. For\\ntwo main types of equations, we obtain criteria and sufficient conditions for identifiability.\\n</p>\",\"PeriodicalId\":39997,\"journal\":{\"name\":\"Siberian Advances in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Advances in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1055134424030064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Advances in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1055134424030064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们通过观察来自任意线性流形的未知加法扰动的噪声解,研究了自主差分方程系数的 Prony 识别问题。我们建立了变分目标函数的 "投影性 "属性。对于两类主要方程,我们获得了可识别性的标准和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Difference Equations by Observations of Solutions with Perturbations from a Linear Manifold

Abstract

We study the Prony identification problem for coefficients of an autonomous difference equation by observations of noisy solutions with unknown additive perturbations from an arbitrary linear manifold. We establish a “projectivity” property of the variational objective function. For two main types of equations, we obtain criteria and sufficient conditions for identifiability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siberian Advances in Mathematics
Siberian Advances in Mathematics Mathematics-Mathematics (all)
CiteScore
0.70
自引率
0.00%
发文量
17
期刊介绍: Siberian Advances in Mathematics  is a journal that publishes articles on fundamental and applied mathematics. It covers a broad spectrum of subjects: algebra and logic, real and complex analysis, functional analysis, differential equations, mathematical physics, geometry and topology, probability and mathematical statistics, mathematical cybernetics, mathematical economics, mathematical problems of geophysics and tomography, numerical methods, and optimization theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信