{"title":"多项式的局部符号变化","authors":"Stefan Steinerberger","doi":"10.1007/s11854-024-0344-1","DOIUrl":null,"url":null,"abstract":"<p>The trigonometric monomial cos(〈<i>k, x</i>〉)on <span>\\(\\mathbb{T}^{d}\\)</span>, a harmonic polynomial <span>\\(p:\\mathbb{S}^{d-1}\\rightarrow\\mathbb{R}\\)</span> of degree <i>k</i> and a Laplacian eigenfunction −Δ<i>f</i> = <i>k</i><sup>2</sup><i>f</i> have a root in each ball of radius ∼ ∥<i>k</i>∥<sup>−1</sup> or ∼ <i>k</i><sup>−1</sup>, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on <span>\\(\\mathbb{T}^{d}\\)</span>, any polynomial <i>p</i> ∈ ℝ[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>d</i></sub>] restricted to <span>\\(\\mathbb{S}^{d-1}\\)</span> and any linear combination of global Laplacian eigenfunctions on ℝ<sup><i>d</i></sup> with <i>d</i> ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δ<i>φ</i> = <i>λφ</i> in Ω ⊂ ℝ<sup><i>n</i></sup> has a root in each <i>B</i>(<i>x, α</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball: the positive and negative mass in each <i>B</i>(<i>x, β</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball cancel when integrated against ∥<i>x</i> − <i>y</i>∥<sup>2−<i>n</i></sup>.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local sign changes of polynomials\",\"authors\":\"Stefan Steinerberger\",\"doi\":\"10.1007/s11854-024-0344-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trigonometric monomial cos(〈<i>k, x</i>〉)on <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>, a harmonic polynomial <span>\\\\(p:\\\\mathbb{S}^{d-1}\\\\rightarrow\\\\mathbb{R}\\\\)</span> of degree <i>k</i> and a Laplacian eigenfunction −Δ<i>f</i> = <i>k</i><sup>2</sup><i>f</i> have a root in each ball of radius ∼ ∥<i>k</i>∥<sup>−1</sup> or ∼ <i>k</i><sup>−1</sup>, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>, any polynomial <i>p</i> ∈ ℝ[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>d</i></sub>] restricted to <span>\\\\(\\\\mathbb{S}^{d-1}\\\\)</span> and any linear combination of global Laplacian eigenfunctions on ℝ<sup><i>d</i></sup> with <i>d</i> ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δ<i>φ</i> = <i>λφ</i> in Ω ⊂ ℝ<sup><i>n</i></sup> has a root in each <i>B</i>(<i>x, α</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball: the positive and negative mass in each <i>B</i>(<i>x, β</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball cancel when integrated against ∥<i>x</i> − <i>y</i>∥<sup>2−<i>n</i></sup>.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0344-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0344-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The trigonometric monomial cos(〈k, x〉)on \(\mathbb{T}^{d}\), a harmonic polynomial \(p:\mathbb{S}^{d-1}\rightarrow\mathbb{R}\) of degree k and a Laplacian eigenfunction −Δf = k2f have a root in each ball of radius ∼ ∥k∥−1 or ∼ k−1, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on \(\mathbb{T}^{d}\), any polynomial p ∈ ℝ[x1,…,xd] restricted to \(\mathbb{S}^{d-1}\) and any linear combination of global Laplacian eigenfunctions on ℝd with d ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δφ = λφ in Ω ⊂ ℝn has a root in each B(x, αnλ−1/2) ball: the positive and negative mass in each B(x, βnλ−1/2) ball cancel when integrated against ∥x − y∥2−n.