多项式的局部符号变化

Stefan Steinerberger
{"title":"多项式的局部符号变化","authors":"Stefan Steinerberger","doi":"10.1007/s11854-024-0344-1","DOIUrl":null,"url":null,"abstract":"<p>The trigonometric monomial cos(〈<i>k, x</i>〉)on <span>\\(\\mathbb{T}^{d}\\)</span>, a harmonic polynomial <span>\\(p:\\mathbb{S}^{d-1}\\rightarrow\\mathbb{R}\\)</span> of degree <i>k</i> and a Laplacian eigenfunction −Δ<i>f</i> = <i>k</i><sup>2</sup><i>f</i> have a root in each ball of radius ∼ ∥<i>k</i>∥<sup>−1</sup> or ∼ <i>k</i><sup>−1</sup>, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on <span>\\(\\mathbb{T}^{d}\\)</span>, any polynomial <i>p</i> ∈ ℝ[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>d</i></sub>] restricted to <span>\\(\\mathbb{S}^{d-1}\\)</span> and any linear combination of global Laplacian eigenfunctions on ℝ<sup><i>d</i></sup> with <i>d</i> ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δ<i>φ</i> = <i>λφ</i> in Ω ⊂ ℝ<sup><i>n</i></sup> has a root in each <i>B</i>(<i>x, α</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball: the positive and negative mass in each <i>B</i>(<i>x, β</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball cancel when integrated against ∥<i>x</i> − <i>y</i>∥<sup>2−<i>n</i></sup>.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local sign changes of polynomials\",\"authors\":\"Stefan Steinerberger\",\"doi\":\"10.1007/s11854-024-0344-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trigonometric monomial cos(〈<i>k, x</i>〉)on <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>, a harmonic polynomial <span>\\\\(p:\\\\mathbb{S}^{d-1}\\\\rightarrow\\\\mathbb{R}\\\\)</span> of degree <i>k</i> and a Laplacian eigenfunction −Δ<i>f</i> = <i>k</i><sup>2</sup><i>f</i> have a root in each ball of radius ∼ ∥<i>k</i>∥<sup>−1</sup> or ∼ <i>k</i><sup>−1</sup>, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on <span>\\\\(\\\\mathbb{T}^{d}\\\\)</span>, any polynomial <i>p</i> ∈ ℝ[<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>d</i></sub>] restricted to <span>\\\\(\\\\mathbb{S}^{d-1}\\\\)</span> and any linear combination of global Laplacian eigenfunctions on ℝ<sup><i>d</i></sup> with <i>d</i> ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δ<i>φ</i> = <i>λφ</i> in Ω ⊂ ℝ<sup><i>n</i></sup> has a root in each <i>B</i>(<i>x, α</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball: the positive and negative mass in each <i>B</i>(<i>x, β</i><sub><i>n</i></sub><i>λ</i><sup>−1/2</sup>) ball cancel when integrated against ∥<i>x</i> − <i>y</i>∥<sup>2−<i>n</i></sup>.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0344-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0344-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

(\mathbb{T}^{d}\)上的三角函数 cos(〈k,x〉)、谐波多项式 (p:度为 k 的调和多项式(p: \mathbb{S}^{d-1}\rightarrow\mathbb{R}\)和拉普拉斯特征函数 -Δf = k2f 分别在半径为 ∼ ∥k∥-1 或 ∼ k-1 的每个球中有一个根。我们将其扩展到线性组合,并证明对于 \(\mathbb{T}^{d}\) 上的任意三角多项式,任意多项式 p∈ ℝ[x1,...,xd]的多项式 p∈ℝ[x1,,xd]、限制于 \(\mathbb{S}^{d-1}\)的多项式 p∈ℝ[x1,,xd]以及 d∈ {2,3}的ℝd 上全局拉普拉斯特征函数的任意线性组合。我们还完善了这样一个事实:Ω ⊂ ℝn 中的特征函数 -Δφ = λφ 在每个 B(x,αnλ-1/2)球中都有一个根:对 ∥x - y∥2-n 积分时,每个 B(x,βnλ-1/2)球中的正质量和负质量抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local sign changes of polynomials

The trigonometric monomial cos(〈k, x〉)on \(\mathbb{T}^{d}\), a harmonic polynomial \(p:\mathbb{S}^{d-1}\rightarrow\mathbb{R}\) of degree k and a Laplacian eigenfunction −Δf = k2f have a root in each ball of radius ∼ ∥k−1 or ∼ k−1, respectively. We extend this to linear combinations and show that for any trigonometric polynomials on \(\mathbb{T}^{d}\), any polynomial p ∈ ℝ[x1,…,xd] restricted to \(\mathbb{S}^{d-1}\) and any linear combination of global Laplacian eigenfunctions on ℝd with d ∈ {2, 3} the same property holds for any ball whose radius is given by the sum of the inverse constituent frequencies. We also refine the fact that an eigenfunction −Δφ = λφ in Ω ⊂ ℝn has a root in each B(x, αnλ−1/2) ball: the positive and negative mass in each B(x, βnλ−1/2) ball cancel when integrated against ∥xy2−n.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信