指数图的扰动:非循环动力学

Magnus Aspenberg, Weiwei Cui
{"title":"指数图的扰动:非循环动力学","authors":"Magnus Aspenberg, Weiwei Cui","doi":"10.1007/s11854-024-0340-5","DOIUrl":null,"url":null,"abstract":"<p>We study perturbations of non-recurrent parameters in the exponential family. It is shown that the set of such parameters has Lebesgue measure zero. This particularly implies that the set of escaping parameters has Lebesgue measure zero, which complements a result of Qiu from 1994. Moreover, we show that non-recurrent parameters can be approximated by hyperbolic ones.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbations of exponential maps: Non-recurrent dynamics\",\"authors\":\"Magnus Aspenberg, Weiwei Cui\",\"doi\":\"10.1007/s11854-024-0340-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study perturbations of non-recurrent parameters in the exponential family. It is shown that the set of such parameters has Lebesgue measure zero. This particularly implies that the set of escaping parameters has Lebesgue measure zero, which complements a result of Qiu from 1994. Moreover, we show that non-recurrent parameters can be approximated by hyperbolic ones.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0340-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0340-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了指数族中非循环参数的扰动。结果表明,此类参数集的勒贝格度量为零。这尤其意味着逃逸参数集的勒贝格度量为零,从而补充了邱晓华 1994 年的一个结果。此外,我们还证明了非循环参数可以用双曲参数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbations of exponential maps: Non-recurrent dynamics

We study perturbations of non-recurrent parameters in the exponential family. It is shown that the set of such parameters has Lebesgue measure zero. This particularly implies that the set of escaping parameters has Lebesgue measure zero, which complements a result of Qiu from 1994. Moreover, we show that non-recurrent parameters can be approximated by hyperbolic ones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信