局部 Lipschitz 函数的最小定理及其应用

Marcelo F. Furtado, João Pablo P. Da Silva
{"title":"局部 Lipschitz 函数的最小定理及其应用","authors":"Marcelo F. Furtado, João Pablo P. Da Silva","doi":"10.1007/s11854-024-0346-z","DOIUrl":null,"url":null,"abstract":"<p>We prove an abstract theorem which provides multiple critical points for locally Lipschtiz functionals under the presence of symmetry. The abstract result is applied to find multiple solutions in <i>H</i><span>\n<sup>1</sup><sub>0</sub>\n</span> (Ω) for the critical semi-linear elliptic equation − Δ<i>u</i> = <i>f</i>(<i>x, u</i>) + ∣<i>u</i>∣<sup>4/(<i>N</i>−2)</sup><i>u</i>, where <i>f</i> is a discontinuous perturbation and Ω ⊂ ℝ<sup><i>N</i></sup> is a bounded smooth domain.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A minimax theorem for locally Lipschitz functionals and applications\",\"authors\":\"Marcelo F. Furtado, João Pablo P. Da Silva\",\"doi\":\"10.1007/s11854-024-0346-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an abstract theorem which provides multiple critical points for locally Lipschtiz functionals under the presence of symmetry. The abstract result is applied to find multiple solutions in <i>H</i><span>\\n<sup>1</sup><sub>0</sub>\\n</span> (Ω) for the critical semi-linear elliptic equation − Δ<i>u</i> = <i>f</i>(<i>x, u</i>) + ∣<i>u</i>∣<sup>4/(<i>N</i>−2)</sup><i>u</i>, where <i>f</i> is a discontinuous perturbation and Ω ⊂ ℝ<sup><i>N</i></sup> is a bounded smooth domain.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0346-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0346-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个抽象定理,它为存在对称性的局部李普希兹函数提供了多个临界点。我们将这一抽象结果应用于为临界半线性椭圆方程 - Δu = f(x, u) + ∣u∣4/(N-2)u 找出 H10 (Ω) 中的多个解,其中 f 是不连续的扰动,Ω ⊂ ℝN 是有界光滑域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A minimax theorem for locally Lipschitz functionals and applications

We prove an abstract theorem which provides multiple critical points for locally Lipschtiz functionals under the presence of symmetry. The abstract result is applied to find multiple solutions in H 10 (Ω) for the critical semi-linear elliptic equation − Δu = f(x, u) + ∣u4/(N−2)u, where f is a discontinuous perturbation and Ω ⊂ ℝN is a bounded smooth domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信