双重形式正则椭圆双拉普拉斯算子

Raz Kupferman, Roee Leder
{"title":"双重形式正则椭圆双拉普拉斯算子","authors":"Raz Kupferman, Roee Leder","doi":"10.1007/s11854-024-0343-2","DOIUrl":null,"url":null,"abstract":"<p>Double forms are sections of the vector bundles <span>\\(\\Lambda^{k}T^{\\ast}{\\cal{M}}\\otimes\\Lambda^{m}T^{\\ast}\\cal{M}\\)</span>, where in this work (<span>\\(\\cal{M},\\frak{g}\\)</span>) is a compact Riemannian manifold with boundary. We study graded second-order differential operators on double forms, which are used in physical applications. A combination of these operators yields a fourth-order operator, which we call a double bilaplacian. We establish the regular ellipticity of the double bilaplacian for several sets of boundary conditions. Under additional conditions, we obtain a Hodge-like decomposition for double forms, whose components are images of the second-order operators, along with a biharmonic element. This analysis lays foundations for resolving several topics in incompatible elasticity, most prominently the existence of stress potentials and Saint-Venant compatibility.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double forms: Regular elliptic bilaplacian operators\",\"authors\":\"Raz Kupferman, Roee Leder\",\"doi\":\"10.1007/s11854-024-0343-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Double forms are sections of the vector bundles <span>\\\\(\\\\Lambda^{k}T^{\\\\ast}{\\\\cal{M}}\\\\otimes\\\\Lambda^{m}T^{\\\\ast}\\\\cal{M}\\\\)</span>, where in this work (<span>\\\\(\\\\cal{M},\\\\frak{g}\\\\)</span>) is a compact Riemannian manifold with boundary. We study graded second-order differential operators on double forms, which are used in physical applications. A combination of these operators yields a fourth-order operator, which we call a double bilaplacian. We establish the regular ellipticity of the double bilaplacian for several sets of boundary conditions. Under additional conditions, we obtain a Hodge-like decomposition for double forms, whose components are images of the second-order operators, along with a biharmonic element. This analysis lays foundations for resolving several topics in incompatible elasticity, most prominently the existence of stress potentials and Saint-Venant compatibility.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0343-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0343-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双形式是向量束(\Lambda^{k}T^{ast}{cal{M}}\otimes\Lambda^{m}T^{\ast}\cal{M}} )的剖面,在本文中(\(\cal{M},\frak{g}\))是有边界的紧凑黎曼流形。我们研究双形式上的分级二阶微分算子,这些算子用于物理应用。这些算子的组合会产生一个四阶算子,我们称之为双双拉弦算子(double bilaplacian)。我们在几组边界条件下建立了双双拉普拉斯的规则椭圆性。在附加条件下,我们得到了类似霍奇的双形式分解,其成分是二阶算子的图像以及双谐波元素。这一分析为解决不相容弹性中的几个课题奠定了基础,其中最突出的是应力势的存在和圣韦南相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double forms: Regular elliptic bilaplacian operators

Double forms are sections of the vector bundles \(\Lambda^{k}T^{\ast}{\cal{M}}\otimes\Lambda^{m}T^{\ast}\cal{M}\), where in this work (\(\cal{M},\frak{g}\)) is a compact Riemannian manifold with boundary. We study graded second-order differential operators on double forms, which are used in physical applications. A combination of these operators yields a fourth-order operator, which we call a double bilaplacian. We establish the regular ellipticity of the double bilaplacian for several sets of boundary conditions. Under additional conditions, we obtain a Hodge-like decomposition for double forms, whose components are images of the second-order operators, along with a biharmonic element. This analysis lays foundations for resolving several topics in incompatible elasticity, most prominently the existence of stress potentials and Saint-Venant compatibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信