处理过氧化物中极子与氧空位之间的相互作用

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dylan Windsor, Haixuan Xu
{"title":"处理过氧化物中极子与氧空位之间的相互作用","authors":"Dylan Windsor, Haixuan Xu","doi":"10.1103/physrevmaterials.8.094406","DOIUrl":null,"url":null,"abstract":"Interactions between polarons and oxygen vacancies in oxides, which cause them to modify one another's physical properties, are highly important for applications such as photovoltaics and ferroelectrics. While the difficulty in modeling polarons using density functional theory (DFT) calculations has been alleviated by the recent development of various techniques, including, e.g., the Hubbard-U parameter and finite-size corrections, the underlying physics of polaron interactions with defects remains unknown. Here, we demonstrate that the polaron-vacancy complexes in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>PbTi</mi><msub><mi mathvariant=\"normal\">O</mi><mn>3</mn></msub></mrow></math> have a preferred orbital configuration, different from the orbital configuration of the bulk polaron, by exploring multiple nearby local minima using <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>DFT</mi><mo>+</mo><mi mathvariant=\"normal\">U</mi></mrow></math>. To address the issue of polaron property dependence on the Hubbard-U value, we determine the U value via enforcement of piecewise linearity, and we employ finite-size corrections. Three local minima with different electronic configurations are found by varying the initial conditions: (i) a polaron trapped in a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi>Ti</mi><mtext>−</mtext></mrow><mn>3</mn><msub><mi>d</mi><mrow><mi>e</mi><mi>g</mi></mrow></msub></mrow></math> orbital on the first-nearest-neighbor Ti-ion of the oxygen vacancy (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mi>g</mi></mrow></math> complex), (ii) a polaron trapped in a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi>Ti</mi><mtext>−</mtext></mrow><mn>3</mn><msub><mi>d</mi><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></msub></mrow></math> orbital at the same position (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></math> complex), and (iii) electrons delocalized across several nearby sites and both spin channels, resulting in a semilocalized state. We find that the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>e</mi><mi>g</mi></mrow></math> complex is the most energetically favorable state, revealing a change in the orbital of the polaron when trapped by an oxygen vacancy, since the bulk polaron is found to be in a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></math> orbital. Furthermore, we demonstrate that great care must be taken to find the correct physical picture with <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>DFT</mi><mo>+</mo><mi mathvariant=\"normal\">U</mi></mrow></math>, since a small change in the initial conditions results in finding different local minima.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treating interactions between polarons and oxygen vacancies in perovskite oxides\",\"authors\":\"Dylan Windsor, Haixuan Xu\",\"doi\":\"10.1103/physrevmaterials.8.094406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between polarons and oxygen vacancies in oxides, which cause them to modify one another's physical properties, are highly important for applications such as photovoltaics and ferroelectrics. While the difficulty in modeling polarons using density functional theory (DFT) calculations has been alleviated by the recent development of various techniques, including, e.g., the Hubbard-U parameter and finite-size corrections, the underlying physics of polaron interactions with defects remains unknown. Here, we demonstrate that the polaron-vacancy complexes in <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>PbTi</mi><msub><mi mathvariant=\\\"normal\\\">O</mi><mn>3</mn></msub></mrow></math> have a preferred orbital configuration, different from the orbital configuration of the bulk polaron, by exploring multiple nearby local minima using <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>DFT</mi><mo>+</mo><mi mathvariant=\\\"normal\\\">U</mi></mrow></math>. To address the issue of polaron property dependence on the Hubbard-U value, we determine the U value via enforcement of piecewise linearity, and we employ finite-size corrections. Three local minima with different electronic configurations are found by varying the initial conditions: (i) a polaron trapped in a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi>Ti</mi><mtext>−</mtext></mrow><mn>3</mn><msub><mi>d</mi><mrow><mi>e</mi><mi>g</mi></mrow></msub></mrow></math> orbital on the first-nearest-neighbor Ti-ion of the oxygen vacancy (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mi>g</mi></mrow></math> complex), (ii) a polaron trapped in a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi>Ti</mi><mtext>−</mtext></mrow><mn>3</mn><msub><mi>d</mi><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></msub></mrow></math> orbital at the same position (<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></math> complex), and (iii) electrons delocalized across several nearby sites and both spin channels, resulting in a semilocalized state. We find that the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>e</mi><mi>g</mi></mrow></math> complex is the most energetically favorable state, revealing a change in the orbital of the polaron when trapped by an oxygen vacancy, since the bulk polaron is found to be in a <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>t</mi><mn>2</mn><mi>g</mi></mrow></math> orbital. Furthermore, we demonstrate that great care must be taken to find the correct physical picture with <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>DFT</mi><mo>+</mo><mi mathvariant=\\\"normal\\\">U</mi></mrow></math>, since a small change in the initial conditions results in finding different local minima.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.094406\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.094406","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

极子与氧化物中的氧空位之间的相互作用会改变彼此的物理性质,这对光伏和铁电等应用非常重要。虽然最近开发的各种技术(如 Hubbard-U 参数和有限尺寸修正)缓解了利用密度泛函理论(DFT)计算对极子进行建模的困难,但极子与缺陷相互作用的基本物理原理仍然未知。在这里,我们通过使用 DFT+U 探索多个附近的局部极小值,证明了 PbTiO3 中的极子-空位复合物具有不同于体极子轨道构型的优选轨道构型。为了解决极子性质依赖于 Hubbard-U 值的问题,我们通过执行片断线性来确定 U 值,并采用了有限尺寸修正。通过改变初始条件,我们发现了三种具有不同电子构型的局部极小值:(i) 极子被困在氧空位第一近邻 Ti-ion 的 Ti-3deg 轨道上(eg 复合物);(ii) 极子被困在同一位置的 Ti-3dt2g 轨道上(t2g 复合物);(iii) 电子被分散到附近的几个位点和两个自旋通道上,形成半定位状态。我们发现,eg 复合物是能量上最有利的状态,它揭示了极子被氧空位困住时轨道的变化,因为发现整个极子处于 t2g 轨道。此外,我们还证明了使用 DFT+U 找到正确的物理图景必须非常小心,因为初始条件的微小变化会导致找到不同的局部极小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Treating interactions between polarons and oxygen vacancies in perovskite oxides

Treating interactions between polarons and oxygen vacancies in perovskite oxides
Interactions between polarons and oxygen vacancies in oxides, which cause them to modify one another's physical properties, are highly important for applications such as photovoltaics and ferroelectrics. While the difficulty in modeling polarons using density functional theory (DFT) calculations has been alleviated by the recent development of various techniques, including, e.g., the Hubbard-U parameter and finite-size corrections, the underlying physics of polaron interactions with defects remains unknown. Here, we demonstrate that the polaron-vacancy complexes in PbTiO3 have a preferred orbital configuration, different from the orbital configuration of the bulk polaron, by exploring multiple nearby local minima using DFT+U. To address the issue of polaron property dependence on the Hubbard-U value, we determine the U value via enforcement of piecewise linearity, and we employ finite-size corrections. Three local minima with different electronic configurations are found by varying the initial conditions: (i) a polaron trapped in a Ti3deg orbital on the first-nearest-neighbor Ti-ion of the oxygen vacancy (eg complex), (ii) a polaron trapped in a Ti3dt2g orbital at the same position (t2g complex), and (iii) electrons delocalized across several nearby sites and both spin channels, resulting in a semilocalized state. We find that the eg complex is the most energetically favorable state, revealing a change in the orbital of the polaron when trapped by an oxygen vacancy, since the bulk polaron is found to be in a t2g orbital. Furthermore, we demonstrate that great care must be taken to find the correct physical picture with DFT+U, since a small change in the initial conditions results in finding different local minima.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信