{"title":"体外量化短跑液压阻力装置的阻力特性","authors":"Matic Sašek, Oskar Cvjetičanin, Nejc Šarabon","doi":"10.1177/17543371241272889","DOIUrl":null,"url":null,"abstract":"The hydraulic resistance device (HRD), a state-of-the-art device developed primarily for resisted sprint training, lacks exploration of its force-generating properties. This technical note aims to evaluate these properties in vitro. In a laboratory experiment, the HRD was pulled with a motorised winch at four speeds (1–4 m s<jats:sup>−1</jats:sup>) and 12 different HRD resistance levels (low, medium and high). The resistance force induced by the HRD was measured using a force plate mounted under the device, and calculated as mean horizontal force produced at a constant pulling speed. Resistance force repeatability between pulling speeds at specific resistance levels was assessed using the coefficient of variation (CV) whereas the intraclass correlation coefficient (ICC<jats:sub>3,1</jats:sub>) was calculated to determine the consistency. A linear regression model quantified resistance force as a function of HRD resistance level. Accuracy of the model was assessed using root mean square error (RMSE). Across 12 resistance levels, the HRD produced resistance forces ranging from 22.57 ± 4.84 to 164.57 ± 4.84 N. The CV decreased from 21.5% at the lowest resistance to 0.4% at the highest. The HRD produced resistance force with high consistency (ICC<jats:sub>3,1</jats:sub> CI = 0.990–0.999). The linear regression model showed a near-perfect fit ( R<jats:sup>2</jats:sup> = 0.99) and predicted resistance force more accurately at medium and high resistance (RMSE range = 0.97–4.57 N). The HRD provides favourable force-generating properties for resisted sprint training and testing, warranting further studies on its exploration in vivo.","PeriodicalId":20674,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology","volume":"197 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro quantification of the resistance force properties of a hydraulic resistance device designed for sprinting\",\"authors\":\"Matic Sašek, Oskar Cvjetičanin, Nejc Šarabon\",\"doi\":\"10.1177/17543371241272889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydraulic resistance device (HRD), a state-of-the-art device developed primarily for resisted sprint training, lacks exploration of its force-generating properties. This technical note aims to evaluate these properties in vitro. In a laboratory experiment, the HRD was pulled with a motorised winch at four speeds (1–4 m s<jats:sup>−1</jats:sup>) and 12 different HRD resistance levels (low, medium and high). The resistance force induced by the HRD was measured using a force plate mounted under the device, and calculated as mean horizontal force produced at a constant pulling speed. Resistance force repeatability between pulling speeds at specific resistance levels was assessed using the coefficient of variation (CV) whereas the intraclass correlation coefficient (ICC<jats:sub>3,1</jats:sub>) was calculated to determine the consistency. A linear regression model quantified resistance force as a function of HRD resistance level. Accuracy of the model was assessed using root mean square error (RMSE). Across 12 resistance levels, the HRD produced resistance forces ranging from 22.57 ± 4.84 to 164.57 ± 4.84 N. The CV decreased from 21.5% at the lowest resistance to 0.4% at the highest. The HRD produced resistance force with high consistency (ICC<jats:sub>3,1</jats:sub> CI = 0.990–0.999). The linear regression model showed a near-perfect fit ( R<jats:sup>2</jats:sup> = 0.99) and predicted resistance force more accurately at medium and high resistance (RMSE range = 0.97–4.57 N). The HRD provides favourable force-generating properties for resisted sprint training and testing, warranting further studies on its exploration in vivo.\",\"PeriodicalId\":20674,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17543371241272889\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17543371241272889","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
In vitro quantification of the resistance force properties of a hydraulic resistance device designed for sprinting
The hydraulic resistance device (HRD), a state-of-the-art device developed primarily for resisted sprint training, lacks exploration of its force-generating properties. This technical note aims to evaluate these properties in vitro. In a laboratory experiment, the HRD was pulled with a motorised winch at four speeds (1–4 m s−1) and 12 different HRD resistance levels (low, medium and high). The resistance force induced by the HRD was measured using a force plate mounted under the device, and calculated as mean horizontal force produced at a constant pulling speed. Resistance force repeatability between pulling speeds at specific resistance levels was assessed using the coefficient of variation (CV) whereas the intraclass correlation coefficient (ICC3,1) was calculated to determine the consistency. A linear regression model quantified resistance force as a function of HRD resistance level. Accuracy of the model was assessed using root mean square error (RMSE). Across 12 resistance levels, the HRD produced resistance forces ranging from 22.57 ± 4.84 to 164.57 ± 4.84 N. The CV decreased from 21.5% at the lowest resistance to 0.4% at the highest. The HRD produced resistance force with high consistency (ICC3,1 CI = 0.990–0.999). The linear regression model showed a near-perfect fit ( R2 = 0.99) and predicted resistance force more accurately at medium and high resistance (RMSE range = 0.97–4.57 N). The HRD provides favourable force-generating properties for resisted sprint training and testing, warranting further studies on its exploration in vivo.
期刊介绍:
The Journal of Sports Engineering and Technology covers the development of novel sports apparel, footwear, and equipment; and the materials, instrumentation, and processes that make advances in sports possible.