利用筛查数字乳腺断层合成术生成的乳腺 X 射线风险评分,开发并验证 5 年风险模型

Shu Jiang, Debbie Lee Bennett, Graham A Colditz
{"title":"利用筛查数字乳腺断层合成术生成的乳腺 X 射线风险评分,开发并验证 5 年风险模型","authors":"Shu Jiang, Debbie Lee Bennett, Graham A Colditz","doi":"10.1101/2024.09.17.24313569","DOIUrl":null,"url":null,"abstract":"Screening digital breast tomosynthesis (DBT) aims to identify breast cancer early when treatment is most effective leading to reduced mortality. In addition to early detection, the information contained within DBT images may also inform subsequent risk stratification and guide risk reducing management. We obtained a 5-year area under the curve (AUC) = 0.78 (95% confidence interval (CI) = 0.75, 0.80) in the internal validation. The model validated in external data (n=6,553 women; AUC = 0.77 (95% CI, 0.74, 0.80). There was no change in the AUC when age and BI-RADS density are added to the synthetic DBT image. The model significantly outperforms the Tyrer-Cuzick model (p<0.01). Our model extends risk prediction applications to synthetic DBT, provides 5-year risk estimates, and is readily calibrated to national risk strata for clinical translation and application in the setting of US risk management guidelines. The model could be implemented within any digital mammography program.","PeriodicalId":501276,"journal":{"name":"medRxiv - Public and Global Health","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a 5-year risk model using mammogram risk scores generated from screening digital breast tomosynthesis\",\"authors\":\"Shu Jiang, Debbie Lee Bennett, Graham A Colditz\",\"doi\":\"10.1101/2024.09.17.24313569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Screening digital breast tomosynthesis (DBT) aims to identify breast cancer early when treatment is most effective leading to reduced mortality. In addition to early detection, the information contained within DBT images may also inform subsequent risk stratification and guide risk reducing management. We obtained a 5-year area under the curve (AUC) = 0.78 (95% confidence interval (CI) = 0.75, 0.80) in the internal validation. The model validated in external data (n=6,553 women; AUC = 0.77 (95% CI, 0.74, 0.80). There was no change in the AUC when age and BI-RADS density are added to the synthetic DBT image. The model significantly outperforms the Tyrer-Cuzick model (p<0.01). Our model extends risk prediction applications to synthetic DBT, provides 5-year risk estimates, and is readily calibrated to national risk strata for clinical translation and application in the setting of US risk management guidelines. The model could be implemented within any digital mammography program.\",\"PeriodicalId\":501276,\"journal\":{\"name\":\"medRxiv - Public and Global Health\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Public and Global Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.24313569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Public and Global Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.24313569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字乳腺断层扫描(DBT)筛查的目的是在治疗最有效的时候及早发现乳腺癌,从而降低死亡率。除了早期发现,DBT 图像中包含的信息还可以为后续的风险分层提供信息,并指导降低风险的管理。在内部验证中,我们获得了 5 年曲线下面积 (AUC) = 0.78(95% 置信区间 (CI) = 0.75, 0.80)。该模型在外部数据(n=6553 名女性;AUC = 0.77 (95% CI, 0.74, 0.80))中得到验证。在合成 DBT 图像中加入年龄和 BI-RADS 密度后,AUC 没有变化。该模型明显优于 Tyrer-Cuzick 模型(p<0.01)。我们的模型将风险预测应用扩展到了合成 DBT,提供了 5 年的风险估计值,并可根据国家风险分层进行校准,以便在美国风险管理指南的设置中进行临床转化和应用。该模型可在任何数字乳腺 X 射线摄影项目中实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and validation of a 5-year risk model using mammogram risk scores generated from screening digital breast tomosynthesis
Screening digital breast tomosynthesis (DBT) aims to identify breast cancer early when treatment is most effective leading to reduced mortality. In addition to early detection, the information contained within DBT images may also inform subsequent risk stratification and guide risk reducing management. We obtained a 5-year area under the curve (AUC) = 0.78 (95% confidence interval (CI) = 0.75, 0.80) in the internal validation. The model validated in external data (n=6,553 women; AUC = 0.77 (95% CI, 0.74, 0.80). There was no change in the AUC when age and BI-RADS density are added to the synthetic DBT image. The model significantly outperforms the Tyrer-Cuzick model (p<0.01). Our model extends risk prediction applications to synthetic DBT, provides 5-year risk estimates, and is readily calibrated to national risk strata for clinical translation and application in the setting of US risk management guidelines. The model could be implemented within any digital mammography program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信