晶界能量各向异性对晶粒生长的影响

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Kiana Naghibzadeh, Zipeng Xu, David Kinderlehrer, Robert Suter, Kaushik Dayal, Gregory S. Rohrer
{"title":"晶界能量各向异性对晶粒生长的影响","authors":"S. Kiana Naghibzadeh, Zipeng Xu, David Kinderlehrer, Robert Suter, Kaushik Dayal, Gregory S. Rohrer","doi":"10.1103/physrevmaterials.8.093403","DOIUrl":null,"url":null,"abstract":"A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces several aspects of the observed microstructural evolution that are not found in the results of simulations assuming isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs because the population of higher-energy grain boundaries decreases while the population of lower-energy boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is dissipated during grain growth by a decrease in the average grain boundary energy.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":"49 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of grain boundary energy anisotropy on grain growth\",\"authors\":\"S. Kiana Naghibzadeh, Zipeng Xu, David Kinderlehrer, Robert Suter, Kaushik Dayal, Gregory S. Rohrer\",\"doi\":\"10.1103/physrevmaterials.8.093403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces several aspects of the observed microstructural evolution that are not found in the results of simulations assuming isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs because the population of higher-energy grain boundaries decreases while the population of lower-energy boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is dissipated during grain growth by a decrease in the average grain boundary energy.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.093403\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.093403","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一种考虑到晶界能量各向异性的晶粒生长阈值动力学模型被用来模拟实验观察到的多晶镍的晶粒生长。模拟再现了观察到的微结构演变的几个方面,而这些方面在假设各向同性的模拟结果中是找不到的。例如,能量最低的孪晶边界的相对面积随着晶粒的长大而增大,平均晶界能量随着晶粒的长大而减小。能量下降的原因是,随着晶粒边界总面积的减少,高能量晶粒边界的数量减少,而低能量边界的数量增加。这种现象产生于各向异性晶界能量假设,无需修改能量最小化算法。这些发现与以下观察结果是一致的:除了晶界面积的减小之外,在晶粒生长过程中,平均晶界能量的减小也会耗散额外的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of grain boundary energy anisotropy on grain growth

Impact of grain boundary energy anisotropy on grain growth
A threshold dynamics model of grain growth that accounts for the anisotropy in the grain boundary energy has been used to simulate experimentally observed grain growth of polycrystalline Ni. The simulation reproduces several aspects of the observed microstructural evolution that are not found in the results of simulations assuming isotropic properties. For example, the relative areas of the lowest-energy twin boundaries increase as the grains grow and the average grain boundary energy decreases with grain growth. This decrease in energy occurs because the population of higher-energy grain boundaries decreases while the population of lower-energy boundaries increases as the total grain boundary area decreases. This phenomenon emerges from the assumption of anisotropic grain boundary energies without modification of the energy minimizing algorithm. These findings are consistent with the observation that, in addition to the decrease in grain boundary area, additional energy is dissipated during grain growth by a decrease in the average grain boundary energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Materials
Physical Review Materials Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
5.80
自引率
5.90%
发文量
611
期刊介绍: Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信