涉及梯度项的准线性椭圆方程的先验估计和柳维尔式结果

Roberta Filippucci, Yuhua Sun, Yadong Zheng
{"title":"涉及梯度项的准线性椭圆方程的先验估计和柳维尔式结果","authors":"Roberta Filippucci, Yuhua Sun, Yadong Zheng","doi":"10.1007/s11854-024-0341-4","DOIUrl":null,"url":null,"abstract":"<p>In this article we study local and global properties of positive solutions of − Δ<sub><i>m</i></sub><i>u</i> = ∣<i>u</i>∣<sup><i>p</i>−1</sup><i>u</i>+<i>M</i>∣∇<i>u</i>∣<sup><i>q</i></sup> in a domain Ω of ℝ<sup><i>N</i></sup>, with <i>m</i> &gt; 1, <i>p, q</i> &gt; 0 and <i>M</i> ∈ ℝ. Following some ideas used in [7, 8], and by using a direct Bernstein method combined with Keller–Osserman’s estimate, we obtain several a priori estimates as well as Liouville type theorems. Moreover, we prove a local Harnack inequality with the help of Serrin’s classical results.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori estimates and Liouville type results for quasilinear elliptic equations involving gradient terms\",\"authors\":\"Roberta Filippucci, Yuhua Sun, Yadong Zheng\",\"doi\":\"10.1007/s11854-024-0341-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we study local and global properties of positive solutions of − Δ<sub><i>m</i></sub><i>u</i> = ∣<i>u</i>∣<sup><i>p</i>−1</sup><i>u</i>+<i>M</i>∣∇<i>u</i>∣<sup><i>q</i></sup> in a domain Ω of ℝ<sup><i>N</i></sup>, with <i>m</i> &gt; 1, <i>p, q</i> &gt; 0 and <i>M</i> ∈ ℝ. Following some ideas used in [7, 8], and by using a direct Bernstein method combined with Keller–Osserman’s estimate, we obtain several a priori estimates as well as Liouville type theorems. Moreover, we prove a local Harnack inequality with the help of Serrin’s classical results.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-024-0341-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-024-0341-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究在ℝN的域Ω中,m > 1, p, q > 0和M∈ ℝ的- Δmu = ∣u∣p-1u+M∣∇u∣q 正解的局部和全局性质。按照[7, 8]中的一些思路,通过使用直接伯恩斯坦方法与凯勒-奥斯曼估计相结合,我们得到了几个先验估计以及柳维尔类型定理。此外,我们还借助 Serrin 的经典结果证明了局部哈纳克不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori estimates and Liouville type results for quasilinear elliptic equations involving gradient terms

In this article we study local and global properties of positive solutions of − Δmu = ∣up−1u+M∣∇uq in a domain Ω of ℝN, with m > 1, p, q > 0 and M ∈ ℝ. Following some ideas used in [7, 8], and by using a direct Bernstein method combined with Keller–Osserman’s estimate, we obtain several a priori estimates as well as Liouville type theorems. Moreover, we prove a local Harnack inequality with the help of Serrin’s classical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信