利用微生物转谷氨酰胺酶(mTG)介导的位点特异性共轭抗体生成抗表皮生长因子受体-2(HER2)免疫脂质体

Anna Bérot, Ofelia Maniti, Saïd El Alaoui, Thierry Granjon, Meddy El Alaoui
{"title":"利用微生物转谷氨酰胺酶(mTG)介导的位点特异性共轭抗体生成抗表皮生长因子受体-2(HER2)免疫脂质体","authors":"Anna Bérot, Ofelia Maniti, Saïd El Alaoui, Thierry Granjon, Meddy El Alaoui","doi":"10.1021/acsptsci.4c00197","DOIUrl":null,"url":null,"abstract":"Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation. In this study, we report the use of the patented COVISOLINK technology and the strain-promoted alkyne–azide cycloaddition (SPAAC) to generate immunoliposomes that target HER2 positive breast cancer with Trastuzumab as the antibody to be coupled. The efficacy of our two-step functionalization strategy and the successful specific coupling of the antibodies were validated by high-performance liquid chromatography-size exclusion chromatography (HPLC-SEC), which allowed a precise quantification of antibodies conjugated to liposomes and confirmed by cryo-TEM and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. We also demonstrate by flow cytometry and epifluorescence microscopy that the produced anti-HER2 immunoliposomes were able to interact specifically with their target cells (SK-BR-3) while remaining negative with cells that express HER2 at a low level (MDA-MB-231). Hence, for the first time, our COVISOLINK strategy using microbial transglutaminase (mTG) enables the preparation and production of well-characterized immunoliposomes that could be used in different applications, including therapies.","PeriodicalId":501473,"journal":{"name":"ACS Pharmacology & Translational Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Anti-Epidermal Growth Factor Receptor-2 (HER2) Immunoliposomes Using Microbial Transglutaminase (mTG)-Mediated Site-Specific Conjugated Antibodies\",\"authors\":\"Anna Bérot, Ofelia Maniti, Saïd El Alaoui, Thierry Granjon, Meddy El Alaoui\",\"doi\":\"10.1021/acsptsci.4c00197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation. In this study, we report the use of the patented COVISOLINK technology and the strain-promoted alkyne–azide cycloaddition (SPAAC) to generate immunoliposomes that target HER2 positive breast cancer with Trastuzumab as the antibody to be coupled. The efficacy of our two-step functionalization strategy and the successful specific coupling of the antibodies were validated by high-performance liquid chromatography-size exclusion chromatography (HPLC-SEC), which allowed a precise quantification of antibodies conjugated to liposomes and confirmed by cryo-TEM and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. We also demonstrate by flow cytometry and epifluorescence microscopy that the produced anti-HER2 immunoliposomes were able to interact specifically with their target cells (SK-BR-3) while remaining negative with cells that express HER2 at a low level (MDA-MB-231). Hence, for the first time, our COVISOLINK strategy using microbial transglutaminase (mTG) enables the preparation and production of well-characterized immunoliposomes that could be used in different applications, including therapies.\",\"PeriodicalId\":501473,\"journal\":{\"name\":\"ACS Pharmacology & Translational Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology & Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology & Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米载体在许多领域都有应用,包括药物输送和细胞标记,目的是锁定和消灭肿瘤细胞。将纳米载体(如脂质体)与目标进行特异性结合的方法之一是在其表面附着感兴趣的抗体。迄今为止,人们对免疫脂质体的开发进行了广泛的探索,但主要涉及化学反应和非特异性反应,这些反应可能会损害抗体的稳定性、完整性和定向性,从而降低免疫脂质体的优化生成。在本研究中,我们报告了使用 COVISOLINK 专利技术和菌株促进炔吖环化反应(SPAAC)生成免疫脂质体的情况,该免疫脂质体以 HER2 阳性乳腺癌为靶点,以曲妥珠单抗为偶联抗体。高效液相色谱-尺寸排阻色谱法(HPLC-SEC)验证了我们的两步功能化策略的有效性以及抗体的成功特异性偶联,该色谱法可精确定量与脂质体偶联的抗体,冷冻电镜(Cryo-TEM)和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析也证实了这一点。我们还通过流式细胞术和外荧光显微镜证明,制备的抗 HER2 免疫脂质体能够与其靶细胞(SK-BR-3)发生特异性相互作用,而对低水平表达 HER2 的细胞(MDA-MB-231)则保持阴性。因此,我们使用微生物转谷氨酰胺酶(mTG)的 COVISOLINK 策略首次实现了制备和生产特征明确的免疫脂质体,可用于不同的应用,包括治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of Anti-Epidermal Growth Factor Receptor-2 (HER2) Immunoliposomes Using Microbial Transglutaminase (mTG)-Mediated Site-Specific Conjugated Antibodies

Generation of Anti-Epidermal Growth Factor Receptor-2 (HER2) Immunoliposomes Using Microbial Transglutaminase (mTG)-Mediated Site-Specific Conjugated Antibodies
Nanocarriers have found their interests in many fields including drug delivery and labeling of cells with the aim to target and eradicate tumor cells. One of the approaches to specifically address nanocarriers, such as liposomes, to their target is to attach antibodies of interest to their surface. To date, the development of immunoliposomes has been widely explored but has mainly involved chemical and unspecific reactions that could impair antibody stability, integrity, and orientation, thus reducing optimized immunoliposomes generation. In this study, we report the use of the patented COVISOLINK technology and the strain-promoted alkyne–azide cycloaddition (SPAAC) to generate immunoliposomes that target HER2 positive breast cancer with Trastuzumab as the antibody to be coupled. The efficacy of our two-step functionalization strategy and the successful specific coupling of the antibodies were validated by high-performance liquid chromatography-size exclusion chromatography (HPLC-SEC), which allowed a precise quantification of antibodies conjugated to liposomes and confirmed by cryo-TEM and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. We also demonstrate by flow cytometry and epifluorescence microscopy that the produced anti-HER2 immunoliposomes were able to interact specifically with their target cells (SK-BR-3) while remaining negative with cells that express HER2 at a low level (MDA-MB-231). Hence, for the first time, our COVISOLINK strategy using microbial transglutaminase (mTG) enables the preparation and production of well-characterized immunoliposomes that could be used in different applications, including therapies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信