AccentBox:实现高保真零重音生成

Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun
{"title":"AccentBox:实现高保真零重音生成","authors":"Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun","doi":"arxiv-2409.09098","DOIUrl":null,"url":null,"abstract":"While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high\nnaturalness and speaker similarity, they fall short in accent fidelity and\ncontrol. To address this issue, we propose zero-shot accent generation that\nunifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel\ntwo-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on\nAccent Identification (AID) with 0.56 f1 score on unseen speakers. In the\nsecond stage, we condition ZS-TTS system on the pretrained speaker-agnostic\naccent embeddings extracted by the AID model. The proposed system achieves\nhigher accent fidelity on inherent/cross accent generation, and enables unseen\naccent generation.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AccentBox: Towards High-Fidelity Zero-Shot Accent Generation\",\"authors\":\"Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun\",\"doi\":\"arxiv-2409.09098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high\\nnaturalness and speaker similarity, they fall short in accent fidelity and\\ncontrol. To address this issue, we propose zero-shot accent generation that\\nunifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel\\ntwo-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on\\nAccent Identification (AID) with 0.56 f1 score on unseen speakers. In the\\nsecond stage, we condition ZS-TTS system on the pretrained speaker-agnostic\\naccent embeddings extracted by the AID model. The proposed system achieves\\nhigher accent fidelity on inherent/cross accent generation, and enables unseen\\naccent generation.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然最近的零镜头文本到语音(ZS-TTS)模型实现了较高的自然度和说话人相似度,但它们在口音保真度和控制方面存在不足。为了解决这个问题,我们提出了零镜头口音生成技术,它将外来口音转换(FAC)、带口音的 TTS 和 ZS-TTS 结合在一起,并采用了新颖的两阶段流水线。在第一阶段,我们在口音识别(AID)方面达到了最先进的水平(SOTA),在未见过的说话者身上获得了 0.56 的 f1 分数。在第二阶段,我们以 AID 模型提取的预训练的与说话人无关的重音嵌入为 ZS-TTS 系统的条件。所提出的系统在固有口音/交叉口音生成方面实现了更高的口音保真度,并能生成未见过的口音。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AccentBox: Towards High-Fidelity Zero-Shot Accent Generation
While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high naturalness and speaker similarity, they fall short in accent fidelity and control. To address this issue, we propose zero-shot accent generation that unifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel two-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on Accent Identification (AID) with 0.56 f1 score on unseen speakers. In the second stage, we condition ZS-TTS system on the pretrained speaker-agnostic accent embeddings extracted by the AID model. The proposed system achieves higher accent fidelity on inherent/cross accent generation, and enables unseen accent generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信