Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun
{"title":"AccentBox:实现高保真零重音生成","authors":"Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun","doi":"arxiv-2409.09098","DOIUrl":null,"url":null,"abstract":"While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high\nnaturalness and speaker similarity, they fall short in accent fidelity and\ncontrol. To address this issue, we propose zero-shot accent generation that\nunifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel\ntwo-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on\nAccent Identification (AID) with 0.56 f1 score on unseen speakers. In the\nsecond stage, we condition ZS-TTS system on the pretrained speaker-agnostic\naccent embeddings extracted by the AID model. The proposed system achieves\nhigher accent fidelity on inherent/cross accent generation, and enables unseen\naccent generation.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AccentBox: Towards High-Fidelity Zero-Shot Accent Generation\",\"authors\":\"Jinzuomu Zhong, Korin Richmond, Zhiba Su, Siqi Sun\",\"doi\":\"arxiv-2409.09098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high\\nnaturalness and speaker similarity, they fall short in accent fidelity and\\ncontrol. To address this issue, we propose zero-shot accent generation that\\nunifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel\\ntwo-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on\\nAccent Identification (AID) with 0.56 f1 score on unseen speakers. In the\\nsecond stage, we condition ZS-TTS system on the pretrained speaker-agnostic\\naccent embeddings extracted by the AID model. The proposed system achieves\\nhigher accent fidelity on inherent/cross accent generation, and enables unseen\\naccent generation.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
虽然最近的零镜头文本到语音(ZS-TTS)模型实现了较高的自然度和说话人相似度,但它们在口音保真度和控制方面存在不足。为了解决这个问题,我们提出了零镜头口音生成技术,它将外来口音转换(FAC)、带口音的 TTS 和 ZS-TTS 结合在一起,并采用了新颖的两阶段流水线。在第一阶段,我们在口音识别(AID)方面达到了最先进的水平(SOTA),在未见过的说话者身上获得了 0.56 的 f1 分数。在第二阶段,我们以 AID 模型提取的预训练的与说话人无关的重音嵌入为 ZS-TTS 系统的条件。所提出的系统在固有口音/交叉口音生成方面实现了更高的口音保真度,并能生成未见过的口音。
AccentBox: Towards High-Fidelity Zero-Shot Accent Generation
While recent Zero-Shot Text-to-Speech (ZS-TTS) models have achieved high
naturalness and speaker similarity, they fall short in accent fidelity and
control. To address this issue, we propose zero-shot accent generation that
unifies Foreign Accent Conversion (FAC), accented TTS, and ZS-TTS, with a novel
two-stage pipeline. In the first stage, we achieve state-of-the-art (SOTA) on
Accent Identification (AID) with 0.56 f1 score on unseen speakers. In the
second stage, we condition ZS-TTS system on the pretrained speaker-agnostic
accent embeddings extracted by the AID model. The proposed system achieves
higher accent fidelity on inherent/cross accent generation, and enables unseen
accent generation.