用于置换操作的量子电路分解的分类和变换

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Ankit Khandelwal, Handy Kurniawan, Shraddha Aangiras, Özlem Salehi, Adam Glos
{"title":"用于置换操作的量子电路分解的分类和变换","authors":"Ankit Khandelwal,&nbsp;Handy Kurniawan,&nbsp;Shraddha Aangiras,&nbsp;Özlem Salehi,&nbsp;Adam Glos","doi":"10.1007/s11128-024-04508-5","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and transformations of quantum circuit decompositions for permutation operations\",\"authors\":\"Ankit Khandelwal,&nbsp;Handy Kurniawan,&nbsp;Shraddha Aangiras,&nbsp;Özlem Salehi,&nbsp;Adam Glos\",\"doi\":\"10.1007/s11128-024-04508-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 9\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04508-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04508-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效分解置换单元至关重要,因为它们经常出现在量子计算中。在本文中,我们确定了影响置换单元分解过程的关键属性。然后,我们根据确定的属性对这些分解进行分类,建立了一个全面的分析框架。我们通过广泛使用的多控托福利门证明了所提出的框架的适用性,揭示了文献中现有的分解只属于所确定的十类中的四类。受这一发现的启发,我们提出了可将给定分解调整为另一类别成员的转换方法,从而减少了资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification and transformations of quantum circuit decompositions for permutation operations

Classification and transformations of quantum circuit decompositions for permutation operations

Classification and transformations of quantum circuit decompositions for permutation operations

Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信