{"title":"针对多能源负载的数据驱动型三阶段自适应模式挖掘方法","authors":"Yixiu Guo;Yong Li;Sisi Zhou;Zhenyu Zhang;Zuyi Li;Mohammad Shahidehpour","doi":"10.1109/TKDE.2024.3462770","DOIUrl":null,"url":null,"abstract":"In-depth understanding of the multi-energy consumption behavior pattern is the essential to improve the management of multi-energy system (MES). This paper proposes a data-driven three-stage adaptive pattern mining approach for multi-energy loads, which addresses the issues of complex multi-dimensional time-series mining, uncommon daily loads discovery, typical load classification and parameter setting requiring user intervention. In the first stage, the relative state changes over time between different energy loads are excavated based on Autoplait, which realizes time pattern discovery, segmentation and match for multi-dimensional loads. In the second stage, adaptive affinity propagation (AAP) considering trend similarity distance (TSD) is proposed to classify loads into common and uncommon clusters, where uncommon loads are eliminated and daily pattern is obtained by taking average of common loads. In the third stage, AAP with windows dynamic time warping (WDTW) identifies various profiles to obtain typical pattern of daily loads. Specifically, pattern mining provides the key information of multi-energy loads, which is significant to the applications for the demand side, such as load scene compression, load forecasting and demand response analysis. A case study uses MES data from Arizona State University to verify the effectiveness and practicality of the proposed approach.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7455-7467"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data-Driven Three-Stage Adaptive Pattern Mining Approach for Multi-Energy Loads\",\"authors\":\"Yixiu Guo;Yong Li;Sisi Zhou;Zhenyu Zhang;Zuyi Li;Mohammad Shahidehpour\",\"doi\":\"10.1109/TKDE.2024.3462770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-depth understanding of the multi-energy consumption behavior pattern is the essential to improve the management of multi-energy system (MES). This paper proposes a data-driven three-stage adaptive pattern mining approach for multi-energy loads, which addresses the issues of complex multi-dimensional time-series mining, uncommon daily loads discovery, typical load classification and parameter setting requiring user intervention. In the first stage, the relative state changes over time between different energy loads are excavated based on Autoplait, which realizes time pattern discovery, segmentation and match for multi-dimensional loads. In the second stage, adaptive affinity propagation (AAP) considering trend similarity distance (TSD) is proposed to classify loads into common and uncommon clusters, where uncommon loads are eliminated and daily pattern is obtained by taking average of common loads. In the third stage, AAP with windows dynamic time warping (WDTW) identifies various profiles to obtain typical pattern of daily loads. Specifically, pattern mining provides the key information of multi-energy loads, which is significant to the applications for the demand side, such as load scene compression, load forecasting and demand response analysis. A case study uses MES data from Arizona State University to verify the effectiveness and practicality of the proposed approach.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7455-7467\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681304/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681304/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
深入了解多能源消耗行为模式是改善多能源系统(MES)管理的关键。本文提出了一种数据驱动的三阶段多能源负荷自适应模式挖掘方法,解决了复杂的多维时间序列挖掘、非常见日负荷发现、典型负荷分类和需要用户干预的参数设置等问题。在第一阶段,基于 Autoplait 挖掘不同能源负荷随时间的相对状态变化,实现多维负荷的时间模式发现、分割和匹配。在第二阶段,提出了考虑趋势相似性距离(TSD)的自适应亲和传播(AAP),将负荷分为常见和不常见群组,其中不常见负荷被剔除,通过取常见负荷的平均值获得日模式。在第三阶段,AAP 与窗口动态时间扭曲(WDTW)一起识别各种剖面,从而获得日负荷的典型模式。具体来说,模式挖掘提供了多能源负荷的关键信息,这对负荷场景压缩、负荷预测和需求响应分析等需求方应用具有重要意义。案例研究使用了亚利桑那州立大学的 MES 数据,以验证所提方法的有效性和实用性。
A Data-Driven Three-Stage Adaptive Pattern Mining Approach for Multi-Energy Loads
In-depth understanding of the multi-energy consumption behavior pattern is the essential to improve the management of multi-energy system (MES). This paper proposes a data-driven three-stage adaptive pattern mining approach for multi-energy loads, which addresses the issues of complex multi-dimensional time-series mining, uncommon daily loads discovery, typical load classification and parameter setting requiring user intervention. In the first stage, the relative state changes over time between different energy loads are excavated based on Autoplait, which realizes time pattern discovery, segmentation and match for multi-dimensional loads. In the second stage, adaptive affinity propagation (AAP) considering trend similarity distance (TSD) is proposed to classify loads into common and uncommon clusters, where uncommon loads are eliminated and daily pattern is obtained by taking average of common loads. In the third stage, AAP with windows dynamic time warping (WDTW) identifies various profiles to obtain typical pattern of daily loads. Specifically, pattern mining provides the key information of multi-energy loads, which is significant to the applications for the demand side, such as load scene compression, load forecasting and demand response analysis. A case study uses MES data from Arizona State University to verify the effectiveness and practicality of the proposed approach.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.