{"title":"二次黑森方程的极弱解","authors":"Sławomir Dinew, Szymon Myga","doi":"arxiv-2409.08852","DOIUrl":null,"url":null,"abstract":"We extend the methods of Lewicka - Pakzad, Sz\\'ekelyhidi - Cao and Li - Qiu\nto study the notion of very weak solutions to the complex $\\sigma_2$ equation\nin domains in $\\mathbb C^n,\\ n\\geq 2$. As a by-product we sharpen the\nregularity threshold of the counterexamples obtained by Li and Qiu in the real\ncase.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Very weak solutions of quadratic Hessian equations\",\"authors\":\"Sławomir Dinew, Szymon Myga\",\"doi\":\"arxiv-2409.08852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the methods of Lewicka - Pakzad, Sz\\\\'ekelyhidi - Cao and Li - Qiu\\nto study the notion of very weak solutions to the complex $\\\\sigma_2$ equation\\nin domains in $\\\\mathbb C^n,\\\\ n\\\\geq 2$. As a by-product we sharpen the\\nregularity threshold of the counterexamples obtained by Li and Qiu in the real\\ncase.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们扩展了 Lewicka - Pakzad, Sz\'ekelyhidi - Cao 和 Li - Qiuto 的方法,研究了复$sigma_2$方程在$mathbb C^n,\ n\geq 2$域中的极弱解的概念。作为副产品,我们提高了李和邱在实例中得到的反例的规律性临界值。
Very weak solutions of quadratic Hessian equations
We extend the methods of Lewicka - Pakzad, Sz\'ekelyhidi - Cao and Li - Qiu
to study the notion of very weak solutions to the complex $\sigma_2$ equation
in domains in $\mathbb C^n,\ n\geq 2$. As a by-product we sharpen the
regularity threshold of the counterexamples obtained by Li and Qiu in the real
case.