简单相连域中的登乔伊-沃尔夫定理

Anna Miriam Benini, Filippo Bracci
{"title":"简单相连域中的登乔伊-沃尔夫定理","authors":"Anna Miriam Benini, Filippo Bracci","doi":"arxiv-2409.11722","DOIUrl":null,"url":null,"abstract":"We characterize the simply connected domains $\\Omega\\subsetneq\\mathbb{C}$\nthat exhibit the Denjoy-Wolff Property, meaning that every holomorphic self-map\nof $\\Omega$ without fixed points has a Denjoy-Wolff point. We demonstrate that\nthis property holds if and only if every automorphism of $\\Omega$ without fixed\npoints in $\\Omega$ has a Denjoy-Wolff point. Furthermore, we establish that the\nDenjoy-Wolff Property is equivalent to the existence of what we term an\n``$H$-limit'' at each boundary point for a Riemann map associated with the\ndomain. The $H$-limit condition is stronger than the existence of\nnon-tangential limits but weaker than unrestricted limits. As an additional\nresult of our work, we prove that there exist bounded simply connected domains\nwhere the Denjoy-Wolff Property holds but which are not visible in the sense of\nBharali and Zimmer. Since visibility is a sufficient condition for the\nDenjoy-Wolff Property, this proves that in general it is not necessary.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Denjoy-Wolff Theorem in simply connected domains\",\"authors\":\"Anna Miriam Benini, Filippo Bracci\",\"doi\":\"arxiv-2409.11722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the simply connected domains $\\\\Omega\\\\subsetneq\\\\mathbb{C}$\\nthat exhibit the Denjoy-Wolff Property, meaning that every holomorphic self-map\\nof $\\\\Omega$ without fixed points has a Denjoy-Wolff point. We demonstrate that\\nthis property holds if and only if every automorphism of $\\\\Omega$ without fixed\\npoints in $\\\\Omega$ has a Denjoy-Wolff point. Furthermore, we establish that the\\nDenjoy-Wolff Property is equivalent to the existence of what we term an\\n``$H$-limit'' at each boundary point for a Riemann map associated with the\\ndomain. The $H$-limit condition is stronger than the existence of\\nnon-tangential limits but weaker than unrestricted limits. As an additional\\nresult of our work, we prove that there exist bounded simply connected domains\\nwhere the Denjoy-Wolff Property holds but which are not visible in the sense of\\nBharali and Zimmer. Since visibility is a sufficient condition for the\\nDenjoy-Wolff Property, this proves that in general it is not necessary.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了表现出 Denjoy-Wolff 特性的简单连接域 $\Omega\subsetneq\mathbb{C}$ 的特征,这意味着 $\Omega$ 的每个无定点的全形自映射都有一个 Denjoy-Wolff 点。我们证明,当且仅当 $\Omega$ 中没有定点的 $\Omega$ 的每个自变都有一个 Denjoy-Wolff 点时,这个性质才成立。此外,我们还证明了登喜-沃尔夫性质等同于与域相关的黎曼图在每个边界点上存在我们称之为"$H$极限 "的条件。$H$极限条件强于非切线极限的存在,但弱于无限制极限。作为我们工作的附加结果,我们证明存在有界简单相连域,其中登乔伊-沃尔夫性质成立,但在巴拉利和齐默尔的意义上不可见。由于可见性是登乔伊-沃尔夫性质的充分条件,这就证明了在一般情况下,可见性并不是必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Denjoy-Wolff Theorem in simply connected domains
We characterize the simply connected domains $\Omega\subsetneq\mathbb{C}$ that exhibit the Denjoy-Wolff Property, meaning that every holomorphic self-map of $\Omega$ without fixed points has a Denjoy-Wolff point. We demonstrate that this property holds if and only if every automorphism of $\Omega$ without fixed points in $\Omega$ has a Denjoy-Wolff point. Furthermore, we establish that the Denjoy-Wolff Property is equivalent to the existence of what we term an ``$H$-limit'' at each boundary point for a Riemann map associated with the domain. The $H$-limit condition is stronger than the existence of non-tangential limits but weaker than unrestricted limits. As an additional result of our work, we prove that there exist bounded simply connected domains where the Denjoy-Wolff Property holds but which are not visible in the sense of Bharali and Zimmer. Since visibility is a sufficient condition for the Denjoy-Wolff Property, this proves that in general it is not necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信