Cauchy-Szegö 核的加权组合及其均值导数的最佳近似值

Viktor V. Savchuk, Maryna V. Savchuk
{"title":"Cauchy-Szegö 核的加权组合及其均值导数的最佳近似值","authors":"Viktor V. Savchuk, Maryna V. Savchuk","doi":"arxiv-2409.10833","DOIUrl":null,"url":null,"abstract":"In this paper, we study an extremal problem concerning best approximation in\nthe Hardy space $H^1$ on the unit disk $\\mathbb D$. Specifically, we consider\nweighted combinations of the Cauchy-Szeg\\\"o kernel and its derivative,\nparametrized by an inner function $\\varphi$ and a complex number $\\lambda$, and\nprovide explicit formula of the best approximation $e_{\\varphi,z}(\\lambda)$ by\nthe subspace $H^1_0$. We also describe the extremal functions associated with\nthis approximation.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best approximations for the weighted combination of the Cauchy--Szegö kernel and its derivative in the mean\",\"authors\":\"Viktor V. Savchuk, Maryna V. Savchuk\",\"doi\":\"arxiv-2409.10833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study an extremal problem concerning best approximation in\\nthe Hardy space $H^1$ on the unit disk $\\\\mathbb D$. Specifically, we consider\\nweighted combinations of the Cauchy-Szeg\\\\\\\"o kernel and its derivative,\\nparametrized by an inner function $\\\\varphi$ and a complex number $\\\\lambda$, and\\nprovide explicit formula of the best approximation $e_{\\\\varphi,z}(\\\\lambda)$ by\\nthe subspace $H^1_0$. We also describe the extremal functions associated with\\nthis approximation.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个关于单位盘$\mathbb D$上的哈代空间$H^1$内的最佳逼近的极值问题。具体地说,我们考虑了由内函数 $\varphi$ 和复数 $\lambda$ 为参数的 Cauchy-Szeg\"o 核及其导数的加权组合,并给出了子空间 $H^1_0$ 的最佳近似值 $e_\{varphi,z}(\lambda)$ 的明确公式。我们还描述了与该近似相关的极值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best approximations for the weighted combination of the Cauchy--Szegö kernel and its derivative in the mean
In this paper, we study an extremal problem concerning best approximation in the Hardy space $H^1$ on the unit disk $\mathbb D$. Specifically, we consider weighted combinations of the Cauchy-Szeg\"o kernel and its derivative, parametrized by an inner function $\varphi$ and a complex number $\lambda$, and provide explicit formula of the best approximation $e_{\varphi,z}(\lambda)$ by the subspace $H^1_0$. We also describe the extremal functions associated with this approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信