S. Muthubalaji, Vijaykumar Kamble, Vaishali Kuralkar, Tushar Waghmare, T. Jayakumar
{"title":"针对电网光伏系统的创新型缄默蚁群优化 (MAPO) 控制技术","authors":"S. Muthubalaji, Vijaykumar Kamble, Vaishali Kuralkar, Tushar Waghmare, T. Jayakumar","doi":"10.1007/s41870-024-02178-1","DOIUrl":null,"url":null,"abstract":"<p>Reducing the power quality problems and regulating the output DC voltage are considered as the essential problems need to be addressed for ensuring the increased performance of grid-PV systems. Different converter topologies and controlling strategies have been developed for this purpose in conventional works, but they are constrained by the major issues of increased computation complexity, high output error, harmonic distortions, and decreased voltage gain. Hence, this research work objects to develop a novel Mutated Ant Province Optimization (MAPO) algorithm incorporated with the modified SEPIC DC-DC converter techniques for solving the regulating the output voltage with reduced harmonics. In order to maximize the power output from the solar PV systems, the Perturb & Observe (P&O) Maximum Peak Point Tracking (MPPT) controlling technique is developed. Subsequently, the photovoltaic (PV) output voltage exhibits a stochastic behavior, necessitating effective regulation to enhance the output gain. The modified SEPIC DC-DC converter is employed for this specific objective, since it effectively adjusts the output voltage with minimized harmonics. However, the performance of the converter is solely dependent on the controller, as it generates controlling signals by optimally selecting parameters. Also, the switching components used in the converter circuit are operated based on the controlling signals. During simulations, Various measurements are used to validate and compare the effectiveness of the suggested converter and controlling mechanisms.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative muted ant colony optimization (MAPO) controlling for grid PV system\",\"authors\":\"S. Muthubalaji, Vijaykumar Kamble, Vaishali Kuralkar, Tushar Waghmare, T. Jayakumar\",\"doi\":\"10.1007/s41870-024-02178-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reducing the power quality problems and regulating the output DC voltage are considered as the essential problems need to be addressed for ensuring the increased performance of grid-PV systems. Different converter topologies and controlling strategies have been developed for this purpose in conventional works, but they are constrained by the major issues of increased computation complexity, high output error, harmonic distortions, and decreased voltage gain. Hence, this research work objects to develop a novel Mutated Ant Province Optimization (MAPO) algorithm incorporated with the modified SEPIC DC-DC converter techniques for solving the regulating the output voltage with reduced harmonics. In order to maximize the power output from the solar PV systems, the Perturb & Observe (P&O) Maximum Peak Point Tracking (MPPT) controlling technique is developed. Subsequently, the photovoltaic (PV) output voltage exhibits a stochastic behavior, necessitating effective regulation to enhance the output gain. The modified SEPIC DC-DC converter is employed for this specific objective, since it effectively adjusts the output voltage with minimized harmonics. However, the performance of the converter is solely dependent on the controller, as it generates controlling signals by optimally selecting parameters. Also, the switching components used in the converter circuit are operated based on the controlling signals. During simulations, Various measurements are used to validate and compare the effectiveness of the suggested converter and controlling mechanisms.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02178-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02178-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An innovative muted ant colony optimization (MAPO) controlling for grid PV system
Reducing the power quality problems and regulating the output DC voltage are considered as the essential problems need to be addressed for ensuring the increased performance of grid-PV systems. Different converter topologies and controlling strategies have been developed for this purpose in conventional works, but they are constrained by the major issues of increased computation complexity, high output error, harmonic distortions, and decreased voltage gain. Hence, this research work objects to develop a novel Mutated Ant Province Optimization (MAPO) algorithm incorporated with the modified SEPIC DC-DC converter techniques for solving the regulating the output voltage with reduced harmonics. In order to maximize the power output from the solar PV systems, the Perturb & Observe (P&O) Maximum Peak Point Tracking (MPPT) controlling technique is developed. Subsequently, the photovoltaic (PV) output voltage exhibits a stochastic behavior, necessitating effective regulation to enhance the output gain. The modified SEPIC DC-DC converter is employed for this specific objective, since it effectively adjusts the output voltage with minimized harmonics. However, the performance of the converter is solely dependent on the controller, as it generates controlling signals by optimally selecting parameters. Also, the switching components used in the converter circuit are operated based on the controlling signals. During simulations, Various measurements are used to validate and compare the effectiveness of the suggested converter and controlling mechanisms.