多项式的全纯近似,其指数限制在凸锥范围内

Álfheiður Edda Sigurðardóttir
{"title":"多项式的全纯近似,其指数限制在凸锥范围内","authors":"Álfheiður Edda Sigurðardóttir","doi":"arxiv-2409.12132","DOIUrl":null,"url":null,"abstract":"We study approximations of holomorphic functions of several complex variables\nby proper subrings of the polynomials. The subrings in question consist of\npolynomials of several complex variables whose exponents are restricted to a\nprescribed convex cone $\\mathbb{R}_+S$ for some compact convex $S\\in\n\\mathbb{R}^n_+$. Analogous to the polynomial hull of a set, we denote the hull\nof $K$ with respect to the given ring by can define hulls of a set $K$ with\nrespect to the given ring, here denoted $\\widehat K{}^S$. By studying an\nextremal function $V^S_K(z)$, we show a version of the Runge-Oka-Weil Theorem\non approximation by these subrings on compact subsets of $\\mathbb{C}^{*n}$ that\nsatisfy $K= \\widehat K{}^S$ and $V^{S*}_K|_K=0$. We show a sharper result for\ncompact Reinhardt sets $K$, that a holomorphic function is uniformly\napproximable on $\\widehat K{}^S$ by members of the ring if and only if it is\nbounded on $\\widehat K{}^S$. We also show that if $K$ is a compact Reinhardt\nsubsets of $\\mathbb{C}^{*n}$, then we have $V^S_K(z)=\\sup_{s\\in S} (\\langle s\n,{\\operatorname{Log}\\, z}\\rangle- \\varphi_A(s)) $, where $\\varphi_A$ is the\nsupporting function of $A=\\operatorname{Log}\\, K= \\{(\\log|z_1|,\\dots,\n\\log|z_n|) \\,;\\, z\\in K\\}$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic approximation by polynomials with exponents restricted to a convex cone\",\"authors\":\"Álfheiður Edda Sigurðardóttir\",\"doi\":\"arxiv-2409.12132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study approximations of holomorphic functions of several complex variables\\nby proper subrings of the polynomials. The subrings in question consist of\\npolynomials of several complex variables whose exponents are restricted to a\\nprescribed convex cone $\\\\mathbb{R}_+S$ for some compact convex $S\\\\in\\n\\\\mathbb{R}^n_+$. Analogous to the polynomial hull of a set, we denote the hull\\nof $K$ with respect to the given ring by can define hulls of a set $K$ with\\nrespect to the given ring, here denoted $\\\\widehat K{}^S$. By studying an\\nextremal function $V^S_K(z)$, we show a version of the Runge-Oka-Weil Theorem\\non approximation by these subrings on compact subsets of $\\\\mathbb{C}^{*n}$ that\\nsatisfy $K= \\\\widehat K{}^S$ and $V^{S*}_K|_K=0$. We show a sharper result for\\ncompact Reinhardt sets $K$, that a holomorphic function is uniformly\\napproximable on $\\\\widehat K{}^S$ by members of the ring if and only if it is\\nbounded on $\\\\widehat K{}^S$. We also show that if $K$ is a compact Reinhardt\\nsubsets of $\\\\mathbb{C}^{*n}$, then we have $V^S_K(z)=\\\\sup_{s\\\\in S} (\\\\langle s\\n,{\\\\operatorname{Log}\\\\, z}\\\\rangle- \\\\varphi_A(s)) $, where $\\\\varphi_A$ is the\\nsupporting function of $A=\\\\operatorname{Log}\\\\, K= \\\\{(\\\\log|z_1|,\\\\dots,\\n\\\\log|z_n|) \\\\,;\\\\, z\\\\in K\\\\}$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过多项式的适当子环来研究几个复变数的全纯函数的近似。这些子环由多个复变函数的多项式组成,这些多项式的指数被限制在某个紧凑凸$S\in\mathbb{R}^n_+$的指定凸锥$\mathbb{R}_+S$内。与集合的多项式全域类似,我们可以定义一个集合 $K$ 相对于给定环的全域,这里用 $\widehat K{}^S$ 表示。通过研究下极值函数 $V^S_K(z)$,我们展示了这些子环在满足 $K= \widehat K{}^S$ 和 $V^{S*}_K|_K=0$ 的 $\mathbb{C}^{*n}$ 紧凑子集上的 Runge-Oka-Weil Theoremon 近似的一个版本。我们为紧凑的莱因哈特集合 $K$ 证明了一个更尖锐的结果:当且仅当全态函数在 $\widehat K{}^S$ 上有界时,全态函数在 $\widehat K{}^S$ 上是可以由环的成员均匀逼近的。我们还证明,如果 $K$ 是 $\mathbb{C}^{*n}$ 的紧凑莱因哈特子集,那么我们有 $V^S_K(z)=\sup_{s\in S}.(\langle s,{\operatorname{Log}\, z}\rangle- \varphi_A(s)) $,其中 $\varphi_A$ 是 $A=\operatorname{Log}\, K=\{(\log|z_1|,\dots,\log|z_n|) \,;\, z\in K\}$ 的支持函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic approximation by polynomials with exponents restricted to a convex cone
We study approximations of holomorphic functions of several complex variables by proper subrings of the polynomials. The subrings in question consist of polynomials of several complex variables whose exponents are restricted to a prescribed convex cone $\mathbb{R}_+S$ for some compact convex $S\in \mathbb{R}^n_+$. Analogous to the polynomial hull of a set, we denote the hull of $K$ with respect to the given ring by can define hulls of a set $K$ with respect to the given ring, here denoted $\widehat K{}^S$. By studying an extremal function $V^S_K(z)$, we show a version of the Runge-Oka-Weil Theorem on approximation by these subrings on compact subsets of $\mathbb{C}^{*n}$ that satisfy $K= \widehat K{}^S$ and $V^{S*}_K|_K=0$. We show a sharper result for compact Reinhardt sets $K$, that a holomorphic function is uniformly approximable on $\widehat K{}^S$ by members of the ring if and only if it is bounded on $\widehat K{}^S$. We also show that if $K$ is a compact Reinhardt subsets of $\mathbb{C}^{*n}$, then we have $V^S_K(z)=\sup_{s\in S} (\langle s ,{\operatorname{Log}\, z}\rangle- \varphi_A(s)) $, where $\varphi_A$ is the supporting function of $A=\operatorname{Log}\, K= \{(\log|z_1|,\dots, \log|z_n|) \,;\, z\in K\}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信