{"title":"阿诺索夫子群的帕特森-沙利文度量的非集中特性","authors":"DONGRYUL M. KIM, HEE OH","doi":"10.1017/etds.2024.55","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline1.png\"/> <jats:tex-math> $\\Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with respect to a parabolic subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline2.png\"/> <jats:tex-math> $P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline3.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline4.png\"/> <jats:tex-math> $G/P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we prove that for a Zariski dense <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline5.png\"/> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-transverse subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline6.png\"/> <jats:tex-math> $\\Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline7.png\"/> <jats:tex-math> $(\\Gamma , \\psi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline8.png\"/> <jats:tex-math> $G/P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline9.png\"/> <jats:tex-math> $\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Poincaré series of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline10.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"54 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-concentration property of Patterson–Sullivan measures for Anosov subgroups\",\"authors\":\"DONGRYUL M. KIM, HEE OH\",\"doi\":\"10.1017/etds.2024.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>G</jats:italic> be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline1.png\\\"/> <jats:tex-math> $\\\\Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with respect to a parabolic subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline2.png\\\"/> <jats:tex-math> $P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline3.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline4.png\\\"/> <jats:tex-math> $G/P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we prove that for a Zariski dense <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline5.png\\\"/> <jats:tex-math> $\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-transverse subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline6.png\\\"/> <jats:tex-math> $\\\\Gamma <G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline7.png\\\"/> <jats:tex-math> $(\\\\Gamma , \\\\psi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline8.png\\\"/> <jats:tex-math> $G/P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline9.png\\\"/> <jats:tex-math> $\\\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Poincaré series of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline10.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.55\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.55","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-concentration property of Patterson–Sullivan measures for Anosov subgroups
Let G be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup $\Gamma <G$ with respect to a parabolic subgroup $P_\theta $ , we prove that any $\Gamma $ -Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $ . More generally, we prove that for a Zariski dense $\theta $ -transverse subgroup $\Gamma <G$ , any $(\Gamma , \psi )$ -Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $ , provided the $\psi $ -Poincaré series of $\Gamma $ diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.