阿诺索夫子群的帕特森-沙利文度量的非集中特性

Pub Date : 2024-09-18 DOI:10.1017/etds.2024.55
DONGRYUL M. KIM, HEE OH
{"title":"阿诺索夫子群的帕特森-沙利文度量的非集中特性","authors":"DONGRYUL M. KIM, HEE OH","doi":"10.1017/etds.2024.55","DOIUrl":null,"url":null,"abstract":"Let <jats:italic>G</jats:italic> be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline1.png\"/> <jats:tex-math> $\\Gamma &lt;G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with respect to a parabolic subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline2.png\"/> <jats:tex-math> $P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline3.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline4.png\"/> <jats:tex-math> $G/P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we prove that for a Zariski dense <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline5.png\"/> <jats:tex-math> $\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-transverse subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline6.png\"/> <jats:tex-math> $\\Gamma &lt;G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline7.png\"/> <jats:tex-math> $(\\Gamma , \\psi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline8.png\"/> <jats:tex-math> $G/P_\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline9.png\"/> <jats:tex-math> $\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Poincaré series of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000555_inline10.png\"/> <jats:tex-math> $\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-concentration property of Patterson–Sullivan measures for Anosov subgroups\",\"authors\":\"DONGRYUL M. KIM, HEE OH\",\"doi\":\"10.1017/etds.2024.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:italic>G</jats:italic> be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline1.png\\\"/> <jats:tex-math> $\\\\Gamma &lt;G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with respect to a parabolic subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline2.png\\\"/> <jats:tex-math> $P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline3.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline4.png\\\"/> <jats:tex-math> $G/P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. More generally, we prove that for a Zariski dense <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline5.png\\\"/> <jats:tex-math> $\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-transverse subgroup <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline6.png\\\"/> <jats:tex-math> $\\\\Gamma &lt;G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, any <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline7.png\\\"/> <jats:tex-math> $(\\\\Gamma , \\\\psi )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Patterson–Sullivan measure charges no mass on any proper subvariety of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline8.png\\\"/> <jats:tex-math> $G/P_\\\\theta $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, provided the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline9.png\\\"/> <jats:tex-math> $\\\\psi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Poincaré series of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000555_inline10.png\\\"/> <jats:tex-math> $\\\\Gamma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个连通的半简单实代数群。对于相对于抛物子群 $P_\theta $ 的扎里斯基密集阿诺索夫子群 $\Gamma <G$,我们证明任何 $\Gamma $ -帕特森-沙利文度量在 $G/P_\theta $ 的任何适当子变上都不带质量。更广义地说,我们证明了对于一个扎里斯基密集的 $\theta $ -反子群 $\Gamma <G$ ,任何 $(\Gamma , \psi )$ -帕特森-沙利文度量在 $G/P_\theta $ 的任何适当子变上都不收取质量,只要 $\Gamma $ 的 $\psi $ -波因卡雷数列在其收敛的上位发散。特别是,我们的结果也适用于相对阿诺索夫子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-concentration property of Patterson–Sullivan measures for Anosov subgroups
Let G be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup $\Gamma <G$ with respect to a parabolic subgroup $P_\theta $ , we prove that any $\Gamma $ -Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $ . More generally, we prove that for a Zariski dense $\theta $ -transverse subgroup $\Gamma <G$ , any $(\Gamma , \psi )$ -Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $ , provided the $\psi $ -Poincaré series of $\Gamma $ diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信