Xueli Zhang, Jiale Chen, Qihua Li, Jianjun Zhang, Wing W. Y. Ng, Ting Wang
{"title":"LSSMSD:基于局部随机灵敏度防御黑盒 DNN 模型窃取","authors":"Xueli Zhang, Jiale Chen, Qihua Li, Jianjun Zhang, Wing W. Y. Ng, Ting Wang","doi":"10.1007/s13042-024-02376-0","DOIUrl":null,"url":null,"abstract":"<p>Machine learning as a service (MLaaS) has become a widely adopted approach, allowing customers to access even the most complex machine learning models through a pay-per-query model. Black-box distribution has been widely used to keep models secret in MLaaS. However, even with black-box distribution alleviating certain risks, the functionality of a model can still be compromised when customers gain access to their model’s predictions. To protect the intellectual property of model owners, we propose an effective defense method against model stealing attacks with the localized stochastic sensitivity (LSS), namely LSSMSD. First, suspicious queries are detected by employing an out-of-distribution (OOD) detector. Addressing a critical issue with many existing defense methods that overly rely on OOD detection results, thus affecting the model’s fidelity, we innovatively introduce LSS to solve this problem. By calculating the LSS of suspicious queries, we can selectively output misleading predictions for queries with high LSS using an misinformation mechanism. Extensive experiments demonstrate that LSSMSD offers robust protections for victim models against black-box proxy attacks such as Jacobian-based dataset augmentation and Knockoff Nets. It significantly reduces accuracies of attackers’ substitute models (up to 77.94%) while yields minimal impact to benign user accuracies (average <span>\\(-2.72\\%\\)</span>), thereby maintaining the fidelity of the victim model.</p>","PeriodicalId":51327,"journal":{"name":"International Journal of Machine Learning and Cybernetics","volume":"40 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity\",\"authors\":\"Xueli Zhang, Jiale Chen, Qihua Li, Jianjun Zhang, Wing W. Y. Ng, Ting Wang\",\"doi\":\"10.1007/s13042-024-02376-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning as a service (MLaaS) has become a widely adopted approach, allowing customers to access even the most complex machine learning models through a pay-per-query model. Black-box distribution has been widely used to keep models secret in MLaaS. However, even with black-box distribution alleviating certain risks, the functionality of a model can still be compromised when customers gain access to their model’s predictions. To protect the intellectual property of model owners, we propose an effective defense method against model stealing attacks with the localized stochastic sensitivity (LSS), namely LSSMSD. First, suspicious queries are detected by employing an out-of-distribution (OOD) detector. Addressing a critical issue with many existing defense methods that overly rely on OOD detection results, thus affecting the model’s fidelity, we innovatively introduce LSS to solve this problem. By calculating the LSS of suspicious queries, we can selectively output misleading predictions for queries with high LSS using an misinformation mechanism. Extensive experiments demonstrate that LSSMSD offers robust protections for victim models against black-box proxy attacks such as Jacobian-based dataset augmentation and Knockoff Nets. It significantly reduces accuracies of attackers’ substitute models (up to 77.94%) while yields minimal impact to benign user accuracies (average <span>\\\\(-2.72\\\\%\\\\)</span>), thereby maintaining the fidelity of the victim model.</p>\",\"PeriodicalId\":51327,\"journal\":{\"name\":\"International Journal of Machine Learning and Cybernetics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Learning and Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s13042-024-02376-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Learning and Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s13042-024-02376-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LSSMSD: defending against black-box DNN model stealing based on localized stochastic sensitivity
Machine learning as a service (MLaaS) has become a widely adopted approach, allowing customers to access even the most complex machine learning models through a pay-per-query model. Black-box distribution has been widely used to keep models secret in MLaaS. However, even with black-box distribution alleviating certain risks, the functionality of a model can still be compromised when customers gain access to their model’s predictions. To protect the intellectual property of model owners, we propose an effective defense method against model stealing attacks with the localized stochastic sensitivity (LSS), namely LSSMSD. First, suspicious queries are detected by employing an out-of-distribution (OOD) detector. Addressing a critical issue with many existing defense methods that overly rely on OOD detection results, thus affecting the model’s fidelity, we innovatively introduce LSS to solve this problem. By calculating the LSS of suspicious queries, we can selectively output misleading predictions for queries with high LSS using an misinformation mechanism. Extensive experiments demonstrate that LSSMSD offers robust protections for victim models against black-box proxy attacks such as Jacobian-based dataset augmentation and Knockoff Nets. It significantly reduces accuracies of attackers’ substitute models (up to 77.94%) while yields minimal impact to benign user accuracies (average \(-2.72\%\)), thereby maintaining the fidelity of the victim model.
期刊介绍:
Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.
The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.
Key research areas to be covered by the journal include:
Machine Learning for modeling interactions between systems
Pattern Recognition technology to support discovery of system-environment interaction
Control of system-environment interactions
Biochemical interaction in biological and biologically-inspired systems
Learning for improvement of communication schemes between systems