ASR 基准测试:需要更具代表性的对话数据集

Gaurav Maheshwari, Dmitry Ivanov, Théo Johannet, Kevin El Haddad
{"title":"ASR 基准测试:需要更具代表性的对话数据集","authors":"Gaurav Maheshwari, Dmitry Ivanov, Théo Johannet, Kevin El Haddad","doi":"arxiv-2409.12042","DOIUrl":null,"url":null,"abstract":"Automatic Speech Recognition (ASR) systems have achieved remarkable\nperformance on widely used benchmarks such as LibriSpeech and Fleurs. However,\nthese benchmarks do not adequately reflect the complexities of real-world\nconversational environments, where speech is often unstructured and contains\ndisfluencies such as pauses, interruptions, and diverse accents. In this study,\nwe introduce a multilingual conversational dataset, derived from TalkBank,\nconsisting of unstructured phone conversation between adults. Our results show\na significant performance drop across various state-of-the-art ASR models when\ntested in conversational settings. Furthermore, we observe a correlation\nbetween Word Error Rate and the presence of speech disfluencies, highlighting\nthe critical need for more realistic, conversational ASR benchmarks.","PeriodicalId":501284,"journal":{"name":"arXiv - EE - Audio and Speech Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASR Benchmarking: Need for a More Representative Conversational Dataset\",\"authors\":\"Gaurav Maheshwari, Dmitry Ivanov, Théo Johannet, Kevin El Haddad\",\"doi\":\"arxiv-2409.12042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Speech Recognition (ASR) systems have achieved remarkable\\nperformance on widely used benchmarks such as LibriSpeech and Fleurs. However,\\nthese benchmarks do not adequately reflect the complexities of real-world\\nconversational environments, where speech is often unstructured and contains\\ndisfluencies such as pauses, interruptions, and diverse accents. In this study,\\nwe introduce a multilingual conversational dataset, derived from TalkBank,\\nconsisting of unstructured phone conversation between adults. Our results show\\na significant performance drop across various state-of-the-art ASR models when\\ntested in conversational settings. Furthermore, we observe a correlation\\nbetween Word Error Rate and the presence of speech disfluencies, highlighting\\nthe critical need for more realistic, conversational ASR benchmarks.\",\"PeriodicalId\":501284,\"journal\":{\"name\":\"arXiv - EE - Audio and Speech Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Audio and Speech Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Audio and Speech Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动语音识别(ASR)系统在 LibriSpeech 和 Fleurs 等广泛使用的基准测试中表现出色。然而,这些基准并不能充分反映真实世界对话环境的复杂性,因为对话环境中的语音通常是非结构化的,并包含停顿、中断和不同口音等不流畅现象。在这项研究中,我们引入了一个多语言会话数据集,该数据集来自 TalkBank,由成人之间的非结构化电话会话组成。我们的研究结果表明,在会话环境中进行测试时,各种最先进的 ASR 模型的性能明显下降。此外,我们还观察到单词错误率(Word Error Rate)与语音不流畅(speech disfluencies)之间存在相关性,这凸显了对更真实的会话式 ASR 基准的迫切需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ASR Benchmarking: Need for a More Representative Conversational Dataset
Automatic Speech Recognition (ASR) systems have achieved remarkable performance on widely used benchmarks such as LibriSpeech and Fleurs. However, these benchmarks do not adequately reflect the complexities of real-world conversational environments, where speech is often unstructured and contains disfluencies such as pauses, interruptions, and diverse accents. In this study, we introduce a multilingual conversational dataset, derived from TalkBank, consisting of unstructured phone conversation between adults. Our results show a significant performance drop across various state-of-the-art ASR models when tested in conversational settings. Furthermore, we observe a correlation between Word Error Rate and the presence of speech disfluencies, highlighting the critical need for more realistic, conversational ASR benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信