{"title":"GaitLRDF:通过局部相关特征表示和判别特征学习进行步态识别","authors":"Xiaoying Pan, Hewei Xie, Nijuan Zhang, Shoukun Li","doi":"10.1007/s10489-024-05837-9","DOIUrl":null,"url":null,"abstract":"<div><p>As an emerging biometric recognition technology, gait recognition has the advantages of non-contact long distance and difficult to imitate. Existing gait recognition methods perform gait recognition by using features extracted from the overall appearance or local regions of humans. However, the detailed features extracted by current gait recognition methods based on human local region lose the overall relevance of the image and the edge information of human local region. Secondly, the method based on the local area of the human body does not focus on the local parts of the human body that are less affected by clothing occlusion. To solve the above problems, this paper proposes a new gait recognition network framework GaitLRDF, which improves the accuracy and robustness of gait recognition by Local Relation Convolutional layers (LRConv) and Human Body Focusing module(HBF). LRConv can simultaneously use the global and local information of the human body, and the local detail features extracted in the module can retain the edge information of the human body. HBF can focuse on the gait parts that are less affected by clothing occlusion, and obtain more discriminative gait detail features. The experimental results show that in the three gait environments of NM, BG and CL set by CASIA-B dataset, GaitLRDF is 0.40%, 0.10% and 1.10% higher than the current most advanced method respectively. The recognition accuracy on OU-MVLP dataset reaches 91.40%.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 23","pages":"12476 - 12491"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaitLRDF: gait recognition via local relevant feature representation and discriminative feature learning\",\"authors\":\"Xiaoying Pan, Hewei Xie, Nijuan Zhang, Shoukun Li\",\"doi\":\"10.1007/s10489-024-05837-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an emerging biometric recognition technology, gait recognition has the advantages of non-contact long distance and difficult to imitate. Existing gait recognition methods perform gait recognition by using features extracted from the overall appearance or local regions of humans. However, the detailed features extracted by current gait recognition methods based on human local region lose the overall relevance of the image and the edge information of human local region. Secondly, the method based on the local area of the human body does not focus on the local parts of the human body that are less affected by clothing occlusion. To solve the above problems, this paper proposes a new gait recognition network framework GaitLRDF, which improves the accuracy and robustness of gait recognition by Local Relation Convolutional layers (LRConv) and Human Body Focusing module(HBF). LRConv can simultaneously use the global and local information of the human body, and the local detail features extracted in the module can retain the edge information of the human body. HBF can focuse on the gait parts that are less affected by clothing occlusion, and obtain more discriminative gait detail features. The experimental results show that in the three gait environments of NM, BG and CL set by CASIA-B dataset, GaitLRDF is 0.40%, 0.10% and 1.10% higher than the current most advanced method respectively. The recognition accuracy on OU-MVLP dataset reaches 91.40%.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"54 23\",\"pages\":\"12476 - 12491\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05837-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05837-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GaitLRDF: gait recognition via local relevant feature representation and discriminative feature learning
As an emerging biometric recognition technology, gait recognition has the advantages of non-contact long distance and difficult to imitate. Existing gait recognition methods perform gait recognition by using features extracted from the overall appearance or local regions of humans. However, the detailed features extracted by current gait recognition methods based on human local region lose the overall relevance of the image and the edge information of human local region. Secondly, the method based on the local area of the human body does not focus on the local parts of the human body that are less affected by clothing occlusion. To solve the above problems, this paper proposes a new gait recognition network framework GaitLRDF, which improves the accuracy and robustness of gait recognition by Local Relation Convolutional layers (LRConv) and Human Body Focusing module(HBF). LRConv can simultaneously use the global and local information of the human body, and the local detail features extracted in the module can retain the edge information of the human body. HBF can focuse on the gait parts that are less affected by clothing occlusion, and obtain more discriminative gait detail features. The experimental results show that in the three gait environments of NM, BG and CL set by CASIA-B dataset, GaitLRDF is 0.40%, 0.10% and 1.10% higher than the current most advanced method respectively. The recognition accuracy on OU-MVLP dataset reaches 91.40%.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.