{"title":"在住宅建筑中整合技术环境设计和能源干预措施:普罗奇达小岛的试点案例","authors":"Giada Romano, Serena Baiani, Francesco Mancini","doi":"10.3390/su16188071","DOIUrl":null,"url":null,"abstract":"The next decade will see severe environmental and technological risks, pushing our adaptive capacity to its limits. The EPBD Case Green directive, to counter this phenomenon, emphasizes accelerating building renovations, reducing GHG emissions and energy consumption, and promoting renewable energy installations. Additionally, it calls for deadlines to phase out fossil fuels and mandates solar system installations. This research provides a comprehensive perspective on the opportunities for and challenges of incorporating renewable energy into the built environment. It focuses on the 2961 residential buildings on Procida, a small island located south of Italy, to efficiently utilize energy resources and lay the groundwork for sustainability. Beginning with an analysis of the territorial, urban, historical–conservation, structural, and geological context, in addition to environmental assessments, the research develops a classification and archetypalization system using in-house software. This system aggregates data on the island’s residential buildings, analyzes their current state, and formulates various intervention scenarios. These scenarios demonstrate how integrating technological–environmental design interventions, such as upgrading the building envelope and enhancing bioclimatic behavior, with energy retrofitting measures, such as replacing mechanical systems and installing solar panels, can improve the overall performance of the existing building stock and achieve energy self-sufficiency.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Technological Environmental Design and Energy Interventions in the Residential Building Stock: The Pilot Case of the Small Island Procida\",\"authors\":\"Giada Romano, Serena Baiani, Francesco Mancini\",\"doi\":\"10.3390/su16188071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The next decade will see severe environmental and technological risks, pushing our adaptive capacity to its limits. The EPBD Case Green directive, to counter this phenomenon, emphasizes accelerating building renovations, reducing GHG emissions and energy consumption, and promoting renewable energy installations. Additionally, it calls for deadlines to phase out fossil fuels and mandates solar system installations. This research provides a comprehensive perspective on the opportunities for and challenges of incorporating renewable energy into the built environment. It focuses on the 2961 residential buildings on Procida, a small island located south of Italy, to efficiently utilize energy resources and lay the groundwork for sustainability. Beginning with an analysis of the territorial, urban, historical–conservation, structural, and geological context, in addition to environmental assessments, the research develops a classification and archetypalization system using in-house software. This system aggregates data on the island’s residential buildings, analyzes their current state, and formulates various intervention scenarios. These scenarios demonstrate how integrating technological–environmental design interventions, such as upgrading the building envelope and enhancing bioclimatic behavior, with energy retrofitting measures, such as replacing mechanical systems and installing solar panels, can improve the overall performance of the existing building stock and achieve energy self-sufficiency.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188071\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188071","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Integrating Technological Environmental Design and Energy Interventions in the Residential Building Stock: The Pilot Case of the Small Island Procida
The next decade will see severe environmental and technological risks, pushing our adaptive capacity to its limits. The EPBD Case Green directive, to counter this phenomenon, emphasizes accelerating building renovations, reducing GHG emissions and energy consumption, and promoting renewable energy installations. Additionally, it calls for deadlines to phase out fossil fuels and mandates solar system installations. This research provides a comprehensive perspective on the opportunities for and challenges of incorporating renewable energy into the built environment. It focuses on the 2961 residential buildings on Procida, a small island located south of Italy, to efficiently utilize energy resources and lay the groundwork for sustainability. Beginning with an analysis of the territorial, urban, historical–conservation, structural, and geological context, in addition to environmental assessments, the research develops a classification and archetypalization system using in-house software. This system aggregates data on the island’s residential buildings, analyzes their current state, and formulates various intervention scenarios. These scenarios demonstrate how integrating technological–environmental design interventions, such as upgrading the building envelope and enhancing bioclimatic behavior, with energy retrofitting measures, such as replacing mechanical systems and installing solar panels, can improve the overall performance of the existing building stock and achieve energy self-sufficiency.