{"title":"利用高噪声商用微波链路数据进行成本敏感型降雨强度预测","authors":"Liankai Zheng, Jiaxiang Lin, Zhixin Huang, Yu Lin, Qin Zheng, Qianqian Chen, Lizheng Lin, Jianyun Chen","doi":"10.3390/su16188067","DOIUrl":null,"url":null,"abstract":"Rainfall intensity prediction based on commercial microwave link data has received significant attention in recent years due to the higher spatial resolution and lower energy consumption. However, the predictive performance is inferior to the model based on meteorological data by reason of the high noise in commercial microwave link data, further exacerbated by the imbalance in the number of samples across different rainfall intensities. Hence, a cost-sensitive rainfall intensity prediction model (CSRFP) is proposed to achieve better predictive performance in high-noise commercial microwave link data. First, the spatiotemporal scene information is encoded, and its weights are trained to provide the model with correlations between signal data from different stations, which helps the model to better capture potential patterns between the data and thus reduce the effect of noise. Next, the rainfall cross-entropy loss based on the rainfall distribution provides the model with the probability of different rainfall intensities occurring and back-calculates the signal attenuation at a specific rainfall intensity, assigning more reasonable weights to different samples considering signal attenuation, which makes the model cost-sensitive and can address the class imbalance problem. Extensive experiments are carried out on high-noise communication data and imbalanced rainfall data in Fuzhou. Compared to typical prediction methods such as RNN applied to rainfall and communication data, CSRFP improves Recall, Precision, AUCROC, AUCPR and F1 and Accuracy by approximately 19%, 37%, 8%, 22%, 30%, and 17%, respectively. Significantly, the model’s prediction accuracy for heavy rain with the smallest number of samples improves by about 13%.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Sensitive Rainfall Intensity Prediction with High-Noise Commercial Microwave Link Data\",\"authors\":\"Liankai Zheng, Jiaxiang Lin, Zhixin Huang, Yu Lin, Qin Zheng, Qianqian Chen, Lizheng Lin, Jianyun Chen\",\"doi\":\"10.3390/su16188067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall intensity prediction based on commercial microwave link data has received significant attention in recent years due to the higher spatial resolution and lower energy consumption. However, the predictive performance is inferior to the model based on meteorological data by reason of the high noise in commercial microwave link data, further exacerbated by the imbalance in the number of samples across different rainfall intensities. Hence, a cost-sensitive rainfall intensity prediction model (CSRFP) is proposed to achieve better predictive performance in high-noise commercial microwave link data. First, the spatiotemporal scene information is encoded, and its weights are trained to provide the model with correlations between signal data from different stations, which helps the model to better capture potential patterns between the data and thus reduce the effect of noise. Next, the rainfall cross-entropy loss based on the rainfall distribution provides the model with the probability of different rainfall intensities occurring and back-calculates the signal attenuation at a specific rainfall intensity, assigning more reasonable weights to different samples considering signal attenuation, which makes the model cost-sensitive and can address the class imbalance problem. Extensive experiments are carried out on high-noise communication data and imbalanced rainfall data in Fuzhou. Compared to typical prediction methods such as RNN applied to rainfall and communication data, CSRFP improves Recall, Precision, AUCROC, AUCPR and F1 and Accuracy by approximately 19%, 37%, 8%, 22%, 30%, and 17%, respectively. Significantly, the model’s prediction accuracy for heavy rain with the smallest number of samples improves by about 13%.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188067\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188067","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cost-Sensitive Rainfall Intensity Prediction with High-Noise Commercial Microwave Link Data
Rainfall intensity prediction based on commercial microwave link data has received significant attention in recent years due to the higher spatial resolution and lower energy consumption. However, the predictive performance is inferior to the model based on meteorological data by reason of the high noise in commercial microwave link data, further exacerbated by the imbalance in the number of samples across different rainfall intensities. Hence, a cost-sensitive rainfall intensity prediction model (CSRFP) is proposed to achieve better predictive performance in high-noise commercial microwave link data. First, the spatiotemporal scene information is encoded, and its weights are trained to provide the model with correlations between signal data from different stations, which helps the model to better capture potential patterns between the data and thus reduce the effect of noise. Next, the rainfall cross-entropy loss based on the rainfall distribution provides the model with the probability of different rainfall intensities occurring and back-calculates the signal attenuation at a specific rainfall intensity, assigning more reasonable weights to different samples considering signal attenuation, which makes the model cost-sensitive and can address the class imbalance problem. Extensive experiments are carried out on high-noise communication data and imbalanced rainfall data in Fuzhou. Compared to typical prediction methods such as RNN applied to rainfall and communication data, CSRFP improves Recall, Precision, AUCROC, AUCPR and F1 and Accuracy by approximately 19%, 37%, 8%, 22%, 30%, and 17%, respectively. Significantly, the model’s prediction accuracy for heavy rain with the smallest number of samples improves by about 13%.