Andrzej Skwiercz, Tatyana Stefanovska, Olexander Zhukov, Anita Zapałowska, Adam Masłoń
{"title":"纳米银颗粒和蛭石堆肥对长尾藻(De Man,1876 年)在 Miscanthus × Giganteus 中的控制及其生长发育的影响","authors":"Andrzej Skwiercz, Tatyana Stefanovska, Olexander Zhukov, Anita Zapałowska, Adam Masłoń","doi":"10.3390/su16188093","DOIUrl":null,"url":null,"abstract":"Miscanthus × giganteus biomass plays a crucial role in producing renewable energy and bio-based products, supporting global sustainability objectives. However, its introduction into the European Union has made it susceptible to the ectoparasitic needle nematode Longidorus spp., which are known vectors of severe viral diseases. The aim of the presented research was to assess the effectiveness of the following soil amendments: vermicompost from Eisenia fetida and silver nanoparticles (Ag-NPs) applied to the soil with Miscanthus plants following artificial inoculation of Longidorus elongatus. A two-year experiment was conducted at the National Institute of Horticulture Research in Skierniewice using concrete rings filled with medium sandy soil amended with 10% peat. Treatments included: control (no amendments), vermicompost (4 L of E. fetida vermicompost), and Ag-NPs (60 mg/L soil). Each treatment was replicated four times. Application of both vermicompost and Ag-NPs positively influenced soil parameters and crop yield while suppressing nematode populations. Significant reductions in L. elongatus density were observed: vermicompost reduced nematode population by 80% and Ag-NPs by 90% compared to the control (15%).","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"31 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Silver Nanoparticles and Vermicompost on the Control of Longidorus elongatus (De Man, 1876) in Miscanthus × Giganteus and Its Growth and Development\",\"authors\":\"Andrzej Skwiercz, Tatyana Stefanovska, Olexander Zhukov, Anita Zapałowska, Adam Masłoń\",\"doi\":\"10.3390/su16188093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miscanthus × giganteus biomass plays a crucial role in producing renewable energy and bio-based products, supporting global sustainability objectives. However, its introduction into the European Union has made it susceptible to the ectoparasitic needle nematode Longidorus spp., which are known vectors of severe viral diseases. The aim of the presented research was to assess the effectiveness of the following soil amendments: vermicompost from Eisenia fetida and silver nanoparticles (Ag-NPs) applied to the soil with Miscanthus plants following artificial inoculation of Longidorus elongatus. A two-year experiment was conducted at the National Institute of Horticulture Research in Skierniewice using concrete rings filled with medium sandy soil amended with 10% peat. Treatments included: control (no amendments), vermicompost (4 L of E. fetida vermicompost), and Ag-NPs (60 mg/L soil). Each treatment was replicated four times. Application of both vermicompost and Ag-NPs positively influenced soil parameters and crop yield while suppressing nematode populations. Significant reductions in L. elongatus density were observed: vermicompost reduced nematode population by 80% and Ag-NPs by 90% compared to the control (15%).\",\"PeriodicalId\":22183,\"journal\":{\"name\":\"Sustainability\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/su16188093\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188093","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of Silver Nanoparticles and Vermicompost on the Control of Longidorus elongatus (De Man, 1876) in Miscanthus × Giganteus and Its Growth and Development
Miscanthus × giganteus biomass plays a crucial role in producing renewable energy and bio-based products, supporting global sustainability objectives. However, its introduction into the European Union has made it susceptible to the ectoparasitic needle nematode Longidorus spp., which are known vectors of severe viral diseases. The aim of the presented research was to assess the effectiveness of the following soil amendments: vermicompost from Eisenia fetida and silver nanoparticles (Ag-NPs) applied to the soil with Miscanthus plants following artificial inoculation of Longidorus elongatus. A two-year experiment was conducted at the National Institute of Horticulture Research in Skierniewice using concrete rings filled with medium sandy soil amended with 10% peat. Treatments included: control (no amendments), vermicompost (4 L of E. fetida vermicompost), and Ag-NPs (60 mg/L soil). Each treatment was replicated four times. Application of both vermicompost and Ag-NPs positively influenced soil parameters and crop yield while suppressing nematode populations. Significant reductions in L. elongatus density were observed: vermicompost reduced nematode population by 80% and Ag-NPs by 90% compared to the control (15%).
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.