弱相互作用超冷费米液体中第一声的弥散:精确计算

Thomas Repplinger, Songtao Huang, Yunpeng Ji, Nir Navon, Hadrien Kurkjian
{"title":"弱相互作用超冷费米液体中第一声的弥散:精确计算","authors":"Thomas Repplinger, Songtao Huang, Yunpeng Ji, Nir Navon, Hadrien Kurkjian","doi":"arxiv-2409.10099","DOIUrl":null,"url":null,"abstract":"At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the\ncleanest realizations of a Fermi liquid. It is described by Landau's theory,\nwhere no phenomenological parameters are needed as the quasiparticle\ninteraction function can be computed perturbatively in powers of the scattering\nlength $a$, the sole parameter of the short-range interparticle interactions.\nObtaining an accurate solution of the transport equation nevertheless requires\na careful treatment of the collision kernel, as the uncontrolled error made by\nthe relaxation time approximations increases when the temperature $T$ drops\nbelow the Fermi temperature. Here, we study sound waves in the hydrodynamic\nregime up to second order in the Chapman-Enskog's expansion. We find that the\nfrequency $\\omega_q$ of the sound wave is shifted above its linear depart as\n$\\omega_q=c_1 q(1+\\alpha q^2\\tau^2)$ where $c_1$ and $q$ are the speed and\nwavenumber of the wave and the typical collision time $\\tau$ scales as\n$1/a^2T^2$. Besides the shear viscosity, the coefficient $\\alpha$ is described\nby a single second-order collision time which we compute exactly from an\nanalytical solution of the transport equation, resulting in a positive\ndispersion $\\alpha>0$. Our results suggest that ultracold atomic Fermi gases\nare an ideal experimental system for quantitative tests of second order\nhydrodynamics.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion of first sound in a weakly interacting ultracold Fermi liquid: an exact calculation\",\"authors\":\"Thomas Repplinger, Songtao Huang, Yunpeng Ji, Nir Navon, Hadrien Kurkjian\",\"doi\":\"arxiv-2409.10099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the\\ncleanest realizations of a Fermi liquid. It is described by Landau's theory,\\nwhere no phenomenological parameters are needed as the quasiparticle\\ninteraction function can be computed perturbatively in powers of the scattering\\nlength $a$, the sole parameter of the short-range interparticle interactions.\\nObtaining an accurate solution of the transport equation nevertheless requires\\na careful treatment of the collision kernel, as the uncontrolled error made by\\nthe relaxation time approximations increases when the temperature $T$ drops\\nbelow the Fermi temperature. Here, we study sound waves in the hydrodynamic\\nregime up to second order in the Chapman-Enskog's expansion. We find that the\\nfrequency $\\\\omega_q$ of the sound wave is shifted above its linear depart as\\n$\\\\omega_q=c_1 q(1+\\\\alpha q^2\\\\tau^2)$ where $c_1$ and $q$ are the speed and\\nwavenumber of the wave and the typical collision time $\\\\tau$ scales as\\n$1/a^2T^2$. Besides the shear viscosity, the coefficient $\\\\alpha$ is described\\nby a single second-order collision time which we compute exactly from an\\nanalytical solution of the transport equation, resulting in a positive\\ndispersion $\\\\alpha>0$. Our results suggest that ultracold atomic Fermi gases\\nare an ideal experimental system for quantitative tests of second order\\nhydrodynamics.\",\"PeriodicalId\":501039,\"journal\":{\"name\":\"arXiv - PHYS - Atomic Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在低温条件下,非配对自旋-1/2 费米子的正常气体是费米液体最清晰的现实之一。它由朗道理论描述,不需要任何现象学参数,因为准粒子相互作用函数可以用散射长度 $a$(短程粒子间相互作用的唯一参数)的幂来扰动计算。在这里,我们研究了流体力学环境中的声波,并将其扩展到查普曼-恩斯科格扩展的二阶。我们发现,声波的频率 $\omega_q$ 在其线性出发点之上发生偏移,即 $\omega_q=c_1 q(1+\alpha q^2\tau^2)$ 其中 $c_1$ 和 $q$ 是声波的速度和波长,典型碰撞时间 $\tau$ 的尺度为 $1/a^2T^2$。除了剪切粘度之外,系数 $\alpha$ 是由单个二阶碰撞时间描述的,我们根据输运方程的分析解精确地计算了该碰撞时间,从而得到了正分散系数 $\alpha>0$ 。我们的结果表明,超冷原子费米气体是定量测试二阶流体力学的理想实验系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dispersion of first sound in a weakly interacting ultracold Fermi liquid: an exact calculation
At low temperature, a normal gas of unpaired spin-1/2 fermions is one of the cleanest realizations of a Fermi liquid. It is described by Landau's theory, where no phenomenological parameters are needed as the quasiparticle interaction function can be computed perturbatively in powers of the scattering length $a$, the sole parameter of the short-range interparticle interactions. Obtaining an accurate solution of the transport equation nevertheless requires a careful treatment of the collision kernel, as the uncontrolled error made by the relaxation time approximations increases when the temperature $T$ drops below the Fermi temperature. Here, we study sound waves in the hydrodynamic regime up to second order in the Chapman-Enskog's expansion. We find that the frequency $\omega_q$ of the sound wave is shifted above its linear depart as $\omega_q=c_1 q(1+\alpha q^2\tau^2)$ where $c_1$ and $q$ are the speed and wavenumber of the wave and the typical collision time $\tau$ scales as $1/a^2T^2$. Besides the shear viscosity, the coefficient $\alpha$ is described by a single second-order collision time which we compute exactly from an analytical solution of the transport equation, resulting in a positive dispersion $\alpha>0$. Our results suggest that ultracold atomic Fermi gases are an ideal experimental system for quantitative tests of second order hydrodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信