Hcm1的动态磷酸化可在慢性压力下促进健康

Michelle M Conti, Jillian P Bail, Rui Li, Lihua Julie Zhu, Jennifer A Benanti
{"title":"Hcm1的动态磷酸化可在慢性压力下促进健康","authors":"Michelle M Conti, Jillian P Bail, Rui Li, Lihua Julie Zhu, Jennifer A Benanti","doi":"10.1101/2024.09.18.613713","DOIUrl":null,"url":null,"abstract":"Cell survival depends upon the ability to adapt to changing environments. Environmental stressors trigger an acute stress response program that rewires cell physiology, downregulates proliferation genes and pauses the cell cycle until the cell adapts. Here, we show that dynamic phosphorylation of the yeast cell cycle-regulatory transcription factor Hcm1 is required to maintain fitness in chronic stress. Hcm1 is activated by cyclin dependent kinase (CDK) and inactivated by the phosphatase calcineurin (CN) in response to stressors that signal through increases in cytosolic Ca<sup>2+</sup>. Expression of a constitutively active, phosphomimetic Hcm1 mutant reduces fitness in stress, suggesting Hcm1 inactivation is required. However, a comprehensive analysis of Hcm1 phosphomutants revealed that Hcm1 activity is also important to survive stress, demonstrating that Hcm1 activity must be toggled on and off to promote gene expression and fitness. These results suggest that dynamic control of cell cycle regulators is critical for survival in stressful environments.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic phosphorylation of Hcm1 promotes fitness in chronic stress\",\"authors\":\"Michelle M Conti, Jillian P Bail, Rui Li, Lihua Julie Zhu, Jennifer A Benanti\",\"doi\":\"10.1101/2024.09.18.613713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell survival depends upon the ability to adapt to changing environments. Environmental stressors trigger an acute stress response program that rewires cell physiology, downregulates proliferation genes and pauses the cell cycle until the cell adapts. Here, we show that dynamic phosphorylation of the yeast cell cycle-regulatory transcription factor Hcm1 is required to maintain fitness in chronic stress. Hcm1 is activated by cyclin dependent kinase (CDK) and inactivated by the phosphatase calcineurin (CN) in response to stressors that signal through increases in cytosolic Ca<sup>2+</sup>. Expression of a constitutively active, phosphomimetic Hcm1 mutant reduces fitness in stress, suggesting Hcm1 inactivation is required. However, a comprehensive analysis of Hcm1 phosphomutants revealed that Hcm1 activity is also important to survive stress, demonstrating that Hcm1 activity must be toggled on and off to promote gene expression and fitness. These results suggest that dynamic control of cell cycle regulators is critical for survival in stressful environments.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.18.613713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.18.613713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞的存活取决于适应环境变化的能力。环境胁迫会触发急性应激反应程序,重构细胞生理结构、下调增殖基因并暂停细胞周期,直到细胞适应为止。在这里,我们发现酵母细胞周期调控转录因子 Hcm1 的动态磷酸化是在慢性压力下保持健康所必需的。Hcm1被细胞周期蛋白依赖激酶(CDK)激活,并在通过细胞膜Ca2+增加发出信号的应激源作用下被磷酸酶钙调磷酸酶(CN)灭活。表达具有组成型活性的拟磷酸化 Hcm1 突变体会降低应激时的适应性,这表明 Hcm1 失活是必需的。然而,对 Hcm1 磷酸拟态突变体的综合分析表明,Hcm1 的活性对于在应激中存活也很重要,这表明 Hcm1 的活性必须通过开关切换才能促进基因表达和存活。这些结果表明,细胞周期调节因子的动态控制对于在应激环境中生存至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic phosphorylation of Hcm1 promotes fitness in chronic stress
Cell survival depends upon the ability to adapt to changing environments. Environmental stressors trigger an acute stress response program that rewires cell physiology, downregulates proliferation genes and pauses the cell cycle until the cell adapts. Here, we show that dynamic phosphorylation of the yeast cell cycle-regulatory transcription factor Hcm1 is required to maintain fitness in chronic stress. Hcm1 is activated by cyclin dependent kinase (CDK) and inactivated by the phosphatase calcineurin (CN) in response to stressors that signal through increases in cytosolic Ca2+. Expression of a constitutively active, phosphomimetic Hcm1 mutant reduces fitness in stress, suggesting Hcm1 inactivation is required. However, a comprehensive analysis of Hcm1 phosphomutants revealed that Hcm1 activity is also important to survive stress, demonstrating that Hcm1 activity must be toggled on and off to promote gene expression and fitness. These results suggest that dynamic control of cell cycle regulators is critical for survival in stressful environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信