结构重复探测器:通过显微镜绘制分子复合物的多尺度定量图谱

Afonso Mendes, Bruno M. Saraiva, Guillaume Jacquemet, Joao I. Mamede, Christophe Leterrier, Ricardo Henriques
{"title":"结构重复探测器:通过显微镜绘制分子复合物的多尺度定量图谱","authors":"Afonso Mendes, Bruno M. Saraiva, Guillaume Jacquemet, Joao I. Mamede, Christophe Leterrier, Ricardo Henriques","doi":"10.1101/2024.09.16.613204","DOIUrl":null,"url":null,"abstract":"From molecules to organelles, cells exhibit recurring structural motifs across multiple scales. Understanding these structures provides insights into their functional roles. While super-resolution microscopy can visualise such patterns, manual detection in large datasets is challenging and biased. We present the Structural Repetition Detector (SReD), an unsupervised computational framework that identifies repetitive biological structures by exploiting local texture repetition. SReD formulates structure detection as a similarity-matching problem between local image regions. It detects recurring patterns without prior knowledge or constraints on the imaging modality. We demonstrate SReD's capabilities on various fluorescence microscopy images. Quantitative analyses of three datasets highlight SReD's utility: estimating the periodicity of spectrin rings in neurons, detecting HIV-1 viral assembly, and evaluating microtubule dynamics modulated by EB3. Our open-source ImageJ and Fiji plugin enables unbiased analysis of repetitive structures across imaging modalities in diverse biological contexts.","PeriodicalId":501590,"journal":{"name":"bioRxiv - Cell Biology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Repetition Detector: multi-scale quantitative mapping of molecular complexes through microscopy\",\"authors\":\"Afonso Mendes, Bruno M. Saraiva, Guillaume Jacquemet, Joao I. Mamede, Christophe Leterrier, Ricardo Henriques\",\"doi\":\"10.1101/2024.09.16.613204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From molecules to organelles, cells exhibit recurring structural motifs across multiple scales. Understanding these structures provides insights into their functional roles. While super-resolution microscopy can visualise such patterns, manual detection in large datasets is challenging and biased. We present the Structural Repetition Detector (SReD), an unsupervised computational framework that identifies repetitive biological structures by exploiting local texture repetition. SReD formulates structure detection as a similarity-matching problem between local image regions. It detects recurring patterns without prior knowledge or constraints on the imaging modality. We demonstrate SReD's capabilities on various fluorescence microscopy images. Quantitative analyses of three datasets highlight SReD's utility: estimating the periodicity of spectrin rings in neurons, detecting HIV-1 viral assembly, and evaluating microtubule dynamics modulated by EB3. Our open-source ImageJ and Fiji plugin enables unbiased analysis of repetitive structures across imaging modalities in diverse biological contexts.\",\"PeriodicalId\":501590,\"journal\":{\"name\":\"bioRxiv - Cell Biology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.16.613204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从分子到细胞器,细胞在多个尺度上表现出重复出现的结构模式。了解这些结构有助于深入了解它们的功能作用。虽然超分辨率显微镜可以将这些模式可视化,但在大型数据集中进行人工检测具有挑战性和偏差性。我们提出了结构重复检测器(SReD),这是一种无监督计算框架,通过利用局部纹理重复来识别重复的生物结构。SReD 将结构检测表述为局部图像区域之间的相似性匹配问题。它可以检测重复模式,而无需先验知识,也不受成像模式的限制。我们在各种荧光显微图像上演示了 SReD 的功能。对三个数据集的定量分析凸显了 SReD 的实用性:估算神经元中谱系蛋白环的周期性、检测 HIV-1 病毒组装以及评估 EB3 调节的微管动力学。我们的开源 ImageJ 和 Fiji 插件能够在不同的生物环境中对各种成像模式的重复结构进行无偏分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Repetition Detector: multi-scale quantitative mapping of molecular complexes through microscopy
From molecules to organelles, cells exhibit recurring structural motifs across multiple scales. Understanding these structures provides insights into their functional roles. While super-resolution microscopy can visualise such patterns, manual detection in large datasets is challenging and biased. We present the Structural Repetition Detector (SReD), an unsupervised computational framework that identifies repetitive biological structures by exploiting local texture repetition. SReD formulates structure detection as a similarity-matching problem between local image regions. It detects recurring patterns without prior knowledge or constraints on the imaging modality. We demonstrate SReD's capabilities on various fluorescence microscopy images. Quantitative analyses of three datasets highlight SReD's utility: estimating the periodicity of spectrin rings in neurons, detecting HIV-1 viral assembly, and evaluating microtubule dynamics modulated by EB3. Our open-source ImageJ and Fiji plugin enables unbiased analysis of repetitive structures across imaging modalities in diverse biological contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信