碳纤维增强热塑性复合材料的施胶材料研究

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Zelal Yavuz, Yahya Öz, Remzi Ecmel Ece, Fahrettin Öztürk
{"title":"碳纤维增强热塑性复合材料的施胶材料研究","authors":"Zelal Yavuz, Yahya Öz, Remzi Ecmel Ece, Fahrettin Öztürk","doi":"10.1177/08927057241284794","DOIUrl":null,"url":null,"abstract":"For the manufacturing of mechanically strong and lightweight composite aerostructures reinforcement materials (e.g. carbon fibers, CFs) are the most convenient way. Therefore, sizing of carbon fibers is crucial for guiding them into service by protecting the CF’s surface. In this study, a novel sizing agent was developed and effects of this sizing on CFs’ physicochemical as well as surface properties were investigated. The impact on the fiber-matrix interphase behavior was analyzed. Results reveal that the surface free energy of CF was increased from 5.67 mJ/m<jats:sup>2</jats:sup> to 13.13 mJ/m<jats:sup>2</jats:sup> through sizing by enhancing the wettability property of CF. In addition, surface topography analyses indicate that the surface roughness Ra is 3.70 ± 2.59 nm for neat CF; 1.01 ± 0.65 nm for Polyetherimide (PEI) sized CF; and 1.71 ± 1.14 nm for PEI-Polyether ether ketone (PEEK) sized CF. Finally, it was concluded that an increment in the wettability can be related with chemical changes on the fiber’s surface.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of sizing materials for carbon fiber reinforced thermoplastic composites\",\"authors\":\"Zelal Yavuz, Yahya Öz, Remzi Ecmel Ece, Fahrettin Öztürk\",\"doi\":\"10.1177/08927057241284794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the manufacturing of mechanically strong and lightweight composite aerostructures reinforcement materials (e.g. carbon fibers, CFs) are the most convenient way. Therefore, sizing of carbon fibers is crucial for guiding them into service by protecting the CF’s surface. In this study, a novel sizing agent was developed and effects of this sizing on CFs’ physicochemical as well as surface properties were investigated. The impact on the fiber-matrix interphase behavior was analyzed. Results reveal that the surface free energy of CF was increased from 5.67 mJ/m<jats:sup>2</jats:sup> to 13.13 mJ/m<jats:sup>2</jats:sup> through sizing by enhancing the wettability property of CF. In addition, surface topography analyses indicate that the surface roughness Ra is 3.70 ± 2.59 nm for neat CF; 1.01 ± 0.65 nm for Polyetherimide (PEI) sized CF; and 1.71 ± 1.14 nm for PEI-Polyether ether ketone (PEEK) sized CF. Finally, it was concluded that an increment in the wettability can be related with chemical changes on the fiber’s surface.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241284794\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241284794","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

对于制造机械强度高、重量轻的复合航空结构而言,增强材料(如碳纤维)是最便捷的方法。因此,碳纤维的上浆对于通过保护碳纤维表面引导其投入使用至关重要。本研究开发了一种新型上浆剂,并研究了这种上浆剂对碳纤维物理化学和表面特性的影响。分析了其对纤维-基质相间行为的影响。结果表明,通过施胶增强了 CF 的润湿性,CF 的表面自由能从 5.67 mJ/m2 增加到 13.13 mJ/m2。此外,表面形貌分析表明,纯 CF 的表面粗糙度 Ra 为 3.70 ± 2.59 nm;聚醚酰亚胺 (PEI) 尺寸 CF 的表面粗糙度 Ra 为 1.01 ± 0.65 nm;PEI-聚醚醚酮 (PEEK) 尺寸 CF 的表面粗糙度 Ra 为 1.71 ± 1.14 nm。最后得出的结论是,润湿性的增加与纤维表面的化学变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of sizing materials for carbon fiber reinforced thermoplastic composites
For the manufacturing of mechanically strong and lightweight composite aerostructures reinforcement materials (e.g. carbon fibers, CFs) are the most convenient way. Therefore, sizing of carbon fibers is crucial for guiding them into service by protecting the CF’s surface. In this study, a novel sizing agent was developed and effects of this sizing on CFs’ physicochemical as well as surface properties were investigated. The impact on the fiber-matrix interphase behavior was analyzed. Results reveal that the surface free energy of CF was increased from 5.67 mJ/m2 to 13.13 mJ/m2 through sizing by enhancing the wettability property of CF. In addition, surface topography analyses indicate that the surface roughness Ra is 3.70 ± 2.59 nm for neat CF; 1.01 ± 0.65 nm for Polyetherimide (PEI) sized CF; and 1.71 ± 1.14 nm for PEI-Polyether ether ketone (PEEK) sized CF. Finally, it was concluded that an increment in the wettability can be related with chemical changes on the fiber’s surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信