维伦金-傅里叶级数的特殊德瓦雷-普桑型矩阵变换均值近似法

Pub Date : 2024-09-16 DOI:10.1007/s10476-024-00049-2
I. Blahota, D. Nagy
{"title":"维伦金-傅里叶级数的特殊德瓦雷-普桑型矩阵变换均值近似法","authors":"I. Blahota,&nbsp;D. Nagy","doi":"10.1007/s10476-024-00049-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the norm convergence for a special matrix-based de la Vallée Poussin-like mean of Fourier series with respect to the Vilenkin system. \nWe estimate the difference between the named mean above and the corresponding function in norm, and the upper estimation is given by the modulus of \ncontinuity of the function. We also give theorems with respect to norm and almost everywhere convergences.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation by a special de la Vallée Poussin type matrix transform mean of Vilenkin–Fourier series\",\"authors\":\"I. Blahota,&nbsp;D. Nagy\",\"doi\":\"10.1007/s10476-024-00049-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the norm convergence for a special matrix-based de la Vallée Poussin-like mean of Fourier series with respect to the Vilenkin system. \\nWe estimate the difference between the named mean above and the corresponding function in norm, and the upper estimation is given by the modulus of \\ncontinuity of the function. We also give theorems with respect to norm and almost everywhere convergences.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00049-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00049-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了基于特殊矩阵的 de la Vallée Poussin 类傅里叶级数均值对 Vilenkin 系统的规范收敛性。我们估算了上面命名的均值与相应函数在规范上的差异,上估算值由函数的连续性模量给出。我们还给出了关于常模和几乎无处不收敛的定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximation by a special de la Vallée Poussin type matrix transform mean of Vilenkin–Fourier series

We consider the norm convergence for a special matrix-based de la Vallée Poussin-like mean of Fourier series with respect to the Vilenkin system. We estimate the difference between the named mean above and the corresponding function in norm, and the upper estimation is given by the modulus of continuity of the function. We also give theorems with respect to norm and almost everywhere convergences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信