利用 GCN 和计算模型揭示以 L-FABP 为靶标的全氟辛烷磺酸的肝毒性机制

Lucas Jividen, Tibo Duran, Xi-Zhi Niu, Jun Bai
{"title":"利用 GCN 和计算模型揭示以 L-FABP 为靶标的全氟辛烷磺酸的肝毒性机制","authors":"Lucas Jividen, Tibo Duran, Xi-Zhi Niu, Jun Bai","doi":"arxiv-2409.10370","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are persistent environmental\npollutants with known toxicity and bioaccumulation issues. Their widespread\nindustrial use and resistance to degradation have led to global environmental\ncontamination and significant health concerns. While a minority of PFAS have\nbeen extensively studied, the toxicity of many PFAS remains poorly understood\ndue to limited direct toxicological data. This study advances the predictive\nmodeling of PFAS toxicity by combining semi-supervised graph convolutional\nnetworks (GCNs) with molecular descriptors and fingerprints. We propose a novel\napproach to enhance the prediction of PFAS binding affinities by isolating\nmolecular fingerprints to construct graphs where then descriptors are set as\nthe node features. This approach specifically captures the structural,\nphysicochemical, and topological features of PFAS without overfitting due to an\nabundance of features. Unsupervised clustering then identifies representative\ncompounds for detailed binding studies. Our results provide a more accurate\nability to estimate PFAS hepatotoxicity to provide guidance in chemical\ndiscovery of new PFAS and the development of new safety regulations.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering the Mechanism of Hepatotoxiciy of PFAS Targeting L-FABP Using GCN and Computational Modeling\",\"authors\":\"Lucas Jividen, Tibo Duran, Xi-Zhi Niu, Jun Bai\",\"doi\":\"arxiv-2409.10370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and polyfluoroalkyl substances (PFAS) are persistent environmental\\npollutants with known toxicity and bioaccumulation issues. Their widespread\\nindustrial use and resistance to degradation have led to global environmental\\ncontamination and significant health concerns. While a minority of PFAS have\\nbeen extensively studied, the toxicity of many PFAS remains poorly understood\\ndue to limited direct toxicological data. This study advances the predictive\\nmodeling of PFAS toxicity by combining semi-supervised graph convolutional\\nnetworks (GCNs) with molecular descriptors and fingerprints. We propose a novel\\napproach to enhance the prediction of PFAS binding affinities by isolating\\nmolecular fingerprints to construct graphs where then descriptors are set as\\nthe node features. This approach specifically captures the structural,\\nphysicochemical, and topological features of PFAS without overfitting due to an\\nabundance of features. Unsupervised clustering then identifies representative\\ncompounds for detailed binding studies. Our results provide a more accurate\\nability to estimate PFAS hepatotoxicity to provide guidance in chemical\\ndiscovery of new PFAS and the development of new safety regulations.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质(PFAS)是持久性环境污染物,具有已知的毒性和生物蓄积性问题。它们在工业中的广泛使用和抗降解性导致了全球环境污染和严重的健康问题。虽然已经对少数全氟辛烷磺酸进行了广泛研究,但由于直接毒理学数据有限,人们对许多全氟辛烷磺酸的毒性仍然知之甚少。本研究通过将半监督图卷积网络(GCN)与分子描述符和指纹相结合,推进了全氟辛烷磺酸毒性的预测建模。我们提出了一种新方法,通过分离分子指纹来构建图,然后将描述符设置为节点特征,从而增强对 PFAS 结合亲和力的预测。这种方法特别捕捉到了 PFAS 的结构、物理化学和拓扑特征,而不会因为特征过多而导致过拟合。然后,通过无监督聚类找出具有代表性的化合物,进行详细的结合研究。我们的研究结果可更准确地估计全氟辛烷磺酸的肝毒性,为发现新的全氟辛烷磺酸化学物质和制定新的安全法规提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering the Mechanism of Hepatotoxiciy of PFAS Targeting L-FABP Using GCN and Computational Modeling
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants with known toxicity and bioaccumulation issues. Their widespread industrial use and resistance to degradation have led to global environmental contamination and significant health concerns. While a minority of PFAS have been extensively studied, the toxicity of many PFAS remains poorly understood due to limited direct toxicological data. This study advances the predictive modeling of PFAS toxicity by combining semi-supervised graph convolutional networks (GCNs) with molecular descriptors and fingerprints. We propose a novel approach to enhance the prediction of PFAS binding affinities by isolating molecular fingerprints to construct graphs where then descriptors are set as the node features. This approach specifically captures the structural, physicochemical, and topological features of PFAS without overfitting due to an abundance of features. Unsupervised clustering then identifies representative compounds for detailed binding studies. Our results provide a more accurate ability to estimate PFAS hepatotoxicity to provide guidance in chemical discovery of new PFAS and the development of new safety regulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信