利用倒 T 形多孔围墙中的圆形圆柱体增强对流传热的数学建模

Sumant Kumar, S. V. S. S. N. V. G. Krishna Murthy, B. V. Rathish Kumar, Deepika Parmar
{"title":"利用倒 T 形多孔围墙中的圆形圆柱体增强对流传热的数学建模","authors":"Sumant Kumar, S. V. S. S. N. V. G. Krishna Murthy, B. V. Rathish Kumar, Deepika Parmar","doi":"10.1002/zamm.202300281","DOIUrl":null,"url":null,"abstract":"The present research aims to improve the convective thermal transport rate of a hybrid nanofluid within an inverted T‐shaped porous enclosure using strategically placed cold circular cylinders. Different locations of circular cylinders in the physical domain are distinguished with nomenclatures as Cases C0‐C4. The mathematical model, based on the Darcy–Brinkman–Forchheimer equation, is numerically simulated through the penalty finite element method. Fluid flow and heat transfer characteristics are depicted graphically, showcasing streamlines, isotherms, mean Nusselt number (), and heat transfer enhancement percentage (En%) across varied thermo‐physical parameters, including Rayleigh number (), Darcy number (), and porosity values (). Notably, the presence of two circular cylinders at the bottom flow zones (Case C4) demonstrates superior heat transfer compared to other spatial cylinder arrangements with increasing . Furthermore, augmenting flow parameters () in the case C4 model intensifies convective heat and fluid flow phenomena. A comparative analysis of thermal transport activity between Case C4 and the simple physical domain (Case C0) reveals maximum thermal enhancement of 166%, 167%, and 36% across varying , , and values. This comprehensive analysis suggests that two circular cylinders (Case C4) at the bottom flow section of the porous enclosure provide an effective strategy for enhancing convective fluid and thermal transport phenomena in an inverted T‐shaped porous enclosure. Moreover, this research significantly contributes in optimizing the thermal transport engineering of T‐shaped applications like solar collectors, exchangers, and heat storage.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure\",\"authors\":\"Sumant Kumar, S. V. S. S. N. V. G. Krishna Murthy, B. V. Rathish Kumar, Deepika Parmar\",\"doi\":\"10.1002/zamm.202300281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research aims to improve the convective thermal transport rate of a hybrid nanofluid within an inverted T‐shaped porous enclosure using strategically placed cold circular cylinders. Different locations of circular cylinders in the physical domain are distinguished with nomenclatures as Cases C0‐C4. The mathematical model, based on the Darcy–Brinkman–Forchheimer equation, is numerically simulated through the penalty finite element method. Fluid flow and heat transfer characteristics are depicted graphically, showcasing streamlines, isotherms, mean Nusselt number (), and heat transfer enhancement percentage (En%) across varied thermo‐physical parameters, including Rayleigh number (), Darcy number (), and porosity values (). Notably, the presence of two circular cylinders at the bottom flow zones (Case C4) demonstrates superior heat transfer compared to other spatial cylinder arrangements with increasing . Furthermore, augmenting flow parameters () in the case C4 model intensifies convective heat and fluid flow phenomena. A comparative analysis of thermal transport activity between Case C4 and the simple physical domain (Case C0) reveals maximum thermal enhancement of 166%, 167%, and 36% across varying , , and values. This comprehensive analysis suggests that two circular cylinders (Case C4) at the bottom flow section of the porous enclosure provide an effective strategy for enhancing convective fluid and thermal transport phenomena in an inverted T‐shaped porous enclosure. Moreover, this research significantly contributes in optimizing the thermal transport engineering of T‐shaped applications like solar collectors, exchangers, and heat storage.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用战略性放置的冷圆柱,提高混合纳米流体在倒 T 形多孔外壳内的对流热传输速率。圆柱体在物理域中的不同位置用 Cases C0-C4 来区分。数学模型以达西-布林克曼-福克海默方程为基础,通过罚分有限元法进行数值模拟。流体流动和传热特性以图表形式展示,包括流线、等温线、平均努塞尔特数()和不同热物理参数(包括瑞利数()、达西数()和孔隙率值()下的传热增强百分比(En%)。值得注意的是,与其他空间圆柱体排列方式相比,底部流动区域(情况 C4)存在两个圆形圆柱体的传热效果更佳。此外,在情况 C4 模型中增加流动参数()会加强对流热和流体流动现象。通过对案例 C4 和简单物理区域(案例 C0)的热传导活动进行比较分析,发现在不同的 、 、 和 值范围内,最大热增强率分别为 166%、167% 和 36%。综合分析表明,多孔围护结构底部流动部分的两个圆形圆柱体(情况 C4)是增强倒 T 型多孔围护结构中对流流体和热传输现象的有效策略。此外,这项研究还有助于优化太阳能集热器、交换器和蓄热器等 T 型应用的热传输工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure
The present research aims to improve the convective thermal transport rate of a hybrid nanofluid within an inverted T‐shaped porous enclosure using strategically placed cold circular cylinders. Different locations of circular cylinders in the physical domain are distinguished with nomenclatures as Cases C0‐C4. The mathematical model, based on the Darcy–Brinkman–Forchheimer equation, is numerically simulated through the penalty finite element method. Fluid flow and heat transfer characteristics are depicted graphically, showcasing streamlines, isotherms, mean Nusselt number (), and heat transfer enhancement percentage (En%) across varied thermo‐physical parameters, including Rayleigh number (), Darcy number (), and porosity values (). Notably, the presence of two circular cylinders at the bottom flow zones (Case C4) demonstrates superior heat transfer compared to other spatial cylinder arrangements with increasing . Furthermore, augmenting flow parameters () in the case C4 model intensifies convective heat and fluid flow phenomena. A comparative analysis of thermal transport activity between Case C4 and the simple physical domain (Case C0) reveals maximum thermal enhancement of 166%, 167%, and 36% across varying , , and values. This comprehensive analysis suggests that two circular cylinders (Case C4) at the bottom flow section of the porous enclosure provide an effective strategy for enhancing convective fluid and thermal transport phenomena in an inverted T‐shaped porous enclosure. Moreover, this research significantly contributes in optimizing the thermal transport engineering of T‐shaped applications like solar collectors, exchangers, and heat storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信