纤细的身体周围流淌着锋利的边缘

Manuel Núñez
{"title":"纤细的身体周围流淌着锋利的边缘","authors":"Manuel Núñez","doi":"10.1002/zamm.202300994","DOIUrl":null,"url":null,"abstract":"The behavior of harmonic functions near corners of the domain boundary has a universal character that may be applied to the study of the flow around slender bodies with sharp edges. Depending of the energy of the potential function near the tip of the corner, this may yield a fast rotating flow or a vortex in its vicinity. For internal angles, such as occur in grooves of the body, a stagnation region or an eddy may occur. Lateral forces are also affected by the presence of corners, yielding configurations that resemble either a circulation lift or a vortex lift.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow around a slender body with sharp edges\",\"authors\":\"Manuel Núñez\",\"doi\":\"10.1002/zamm.202300994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of harmonic functions near corners of the domain boundary has a universal character that may be applied to the study of the flow around slender bodies with sharp edges. Depending of the energy of the potential function near the tip of the corner, this may yield a fast rotating flow or a vortex in its vicinity. For internal angles, such as occur in grooves of the body, a stagnation region or an eddy may occur. Lateral forces are also affected by the presence of corners, yielding configurations that resemble either a circulation lift or a vortex lift.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

谐函数在域边界拐角附近的行为具有普遍性,可用于研究具有尖锐边缘的细长体周围的流动。根据角尖附近势函数的能量,可能会在其附近产生快速旋转流或涡流。对于内角,例如在主体的凹槽中,可能会出现停滞区或涡流。侧向力也会受到转角的影响,产生类似于环流升力或涡流升力的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow around a slender body with sharp edges
The behavior of harmonic functions near corners of the domain boundary has a universal character that may be applied to the study of the flow around slender bodies with sharp edges. Depending of the energy of the potential function near the tip of the corner, this may yield a fast rotating flow or a vortex in its vicinity. For internal angles, such as occur in grooves of the body, a stagnation region or an eddy may occur. Lateral forces are also affected by the presence of corners, yielding configurations that resemble either a circulation lift or a vortex lift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信