利用高熵 NASICON 型固体电解质推动高能固态电池的发展

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Asish Kumar Das, Pratiksha Gami, Hari Narayanan Vasavan, Samriddhi Saxena, Neha Dagar, Sonia Deswal, Pradeep Kumar, Sunil Kumar
{"title":"利用高熵 NASICON 型固体电解质推动高能固态电池的发展","authors":"Asish Kumar Das, Pratiksha Gami, Hari Narayanan Vasavan, Samriddhi Saxena, Neha Dagar, Sonia Deswal, Pradeep Kumar, Sunil Kumar","doi":"10.1021/acsaem.4c02011","DOIUrl":null,"url":null,"abstract":"Herein, we have developed a <i>High-Entropy</i> (<i>∼1.52 R</i>, calculated at M-site) lithium-stuffed NASICON-type solid electrolyte [Li<sub>1.3</sub>Sn<sub>1.7/3</sub>Zr<sub>1.7/3</sub>Ti<sub>1.7/3</sub>Al<sub>0.1</sub>Sc<sub>0.1</sub>Y<sub>0.1</sub>(PO<sub>4</sub>)<sub>3</sub>] with a total (grain + grain-boundary) ionic conductivity of ∼1.42 × 10<sup>–4</sup> S cm<sup>–1</sup> (highest reported among NASICONs containing Zr–Sn–Ti) and a low activation energy of ∼0.33 eV with a relative density of <i>Conventionally Sintered</i> pellet ∼94%. Symmetric cells with a PVDF-HFP/LiTFSI buffer layer showed stable performance for 500 cycles at 0.2 mA cm<sup>–2</sup> without short-circuiting. Full cells with LiFePO<sub>4</sub> retained ∼99% capacity after 100 cycles at 1C, while those with NMC811 delivered ∼140 mAh g<sup>–1</sup> at C/3.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing High-Energy Solid-State Batteries with High-Entropy NASICON-type Solid Electrolytes\",\"authors\":\"Asish Kumar Das, Pratiksha Gami, Hari Narayanan Vasavan, Samriddhi Saxena, Neha Dagar, Sonia Deswal, Pradeep Kumar, Sunil Kumar\",\"doi\":\"10.1021/acsaem.4c02011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we have developed a <i>High-Entropy</i> (<i>∼1.52 R</i>, calculated at M-site) lithium-stuffed NASICON-type solid electrolyte [Li<sub>1.3</sub>Sn<sub>1.7/3</sub>Zr<sub>1.7/3</sub>Ti<sub>1.7/3</sub>Al<sub>0.1</sub>Sc<sub>0.1</sub>Y<sub>0.1</sub>(PO<sub>4</sub>)<sub>3</sub>] with a total (grain + grain-boundary) ionic conductivity of ∼1.42 × 10<sup>–4</sup> S cm<sup>–1</sup> (highest reported among NASICONs containing Zr–Sn–Ti) and a low activation energy of ∼0.33 eV with a relative density of <i>Conventionally Sintered</i> pellet ∼94%. Symmetric cells with a PVDF-HFP/LiTFSI buffer layer showed stable performance for 500 cycles at 0.2 mA cm<sup>–2</sup> without short-circuiting. Full cells with LiFePO<sub>4</sub> retained ∼99% capacity after 100 cycles at 1C, while those with NMC811 delivered ∼140 mAh g<sup>–1</sup> at C/3.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsaem.4c02011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c02011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们开发了一种高熵(∼1.52 R,在 M 位点计算)锂填充 NASICON 型固体电解质[Li1.3Sn1.7/3Zr1.7/3Ti1.7/3Al0.1Sc0.1Y0.1(PO4)3],其总离子电导率(晶粒 + 晶界)为 ∼1.42 × 10-4 S cm-1(在含有 Zr-Sn-Ti 的 NASICON 中最高),活化能低至 ∼ 0.33 eV,相对密度为常规烧结颗粒的 ∼ 94%。带有 PVDF-HFP/LiTFSI 缓冲层的对称电池在 0.2 mA cm-2 的条件下循环 500 次后性能稳定,无短路现象。使用 LiFePO4 的全电池在 1C 条件下循环 100 次后容量保持在 99% 以上,而使用 NMC811 的电池在 C/3 条件下的容量为 140 mAh g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing High-Energy Solid-State Batteries with High-Entropy NASICON-type Solid Electrolytes

Advancing High-Energy Solid-State Batteries with High-Entropy NASICON-type Solid Electrolytes
Herein, we have developed a High-Entropy (∼1.52 R, calculated at M-site) lithium-stuffed NASICON-type solid electrolyte [Li1.3Sn1.7/3Zr1.7/3Ti1.7/3Al0.1Sc0.1Y0.1(PO4)3] with a total (grain + grain-boundary) ionic conductivity of ∼1.42 × 10–4 S cm–1 (highest reported among NASICONs containing Zr–Sn–Ti) and a low activation energy of ∼0.33 eV with a relative density of Conventionally Sintered pellet ∼94%. Symmetric cells with a PVDF-HFP/LiTFSI buffer layer showed stable performance for 500 cycles at 0.2 mA cm–2 without short-circuiting. Full cells with LiFePO4 retained ∼99% capacity after 100 cycles at 1C, while those with NMC811 delivered ∼140 mAh g–1 at C/3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信