{"title":"有时间延迟的混合交通中由 DRL 控制的多代理互联和自动驾驶车辆","authors":"Zhuwei Wang;Yi Xue;Lihan Liu;Haijun Zhang;Chunhui Qu;Chao Fang","doi":"10.1109/TITS.2024.3435036","DOIUrl":null,"url":null,"abstract":"The development of intelligent transportation systems (ITS) has attracted significant attention to connected and autonomous vehicles (CAVs). It is urgent to investigate multi-CAV intelligent cruise control solutions in mixed traffic environments. In addition, the impact of platoon dynamics and time delays, induced by shared wireless communications, data processing, and actuation cannot be ignored. This article investigates the development of a multi-agent deep reinforcement learning (MADRL) controller tailored for CAVs operating within mixed and dynamic traffic scenarios that involve time delays. Firstly, the error dynamics in the discrete-time domain for each subplatoon is derived by considering the time-varying delays and leading vehicle states, and then the optimal CAV cruise control problem is formulated. Subsequently, the partially observable Markov game (POMG) is used to construct the multi-agent environment, and then a centralized training decentralized execution (CTDE) algorithm framework is proposed based on the multi-agent deep deterministic policy gradient (MADDPG) method. Finally, the computational complexity and the influence of delay are analyzed. The simulation results illustrate the effectiveness of the proposed intelligent algorithm.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"17676-17688"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent DRL-Controlled Connected and Automated Vehicles in Mixed Traffic With Time Delays\",\"authors\":\"Zhuwei Wang;Yi Xue;Lihan Liu;Haijun Zhang;Chunhui Qu;Chao Fang\",\"doi\":\"10.1109/TITS.2024.3435036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of intelligent transportation systems (ITS) has attracted significant attention to connected and autonomous vehicles (CAVs). It is urgent to investigate multi-CAV intelligent cruise control solutions in mixed traffic environments. In addition, the impact of platoon dynamics and time delays, induced by shared wireless communications, data processing, and actuation cannot be ignored. This article investigates the development of a multi-agent deep reinforcement learning (MADRL) controller tailored for CAVs operating within mixed and dynamic traffic scenarios that involve time delays. Firstly, the error dynamics in the discrete-time domain for each subplatoon is derived by considering the time-varying delays and leading vehicle states, and then the optimal CAV cruise control problem is formulated. Subsequently, the partially observable Markov game (POMG) is used to construct the multi-agent environment, and then a centralized training decentralized execution (CTDE) algorithm framework is proposed based on the multi-agent deep deterministic policy gradient (MADDPG) method. Finally, the computational complexity and the influence of delay are analyzed. The simulation results illustrate the effectiveness of the proposed intelligent algorithm.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"17676-17688\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682601/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682601/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Multi-Agent DRL-Controlled Connected and Automated Vehicles in Mixed Traffic With Time Delays
The development of intelligent transportation systems (ITS) has attracted significant attention to connected and autonomous vehicles (CAVs). It is urgent to investigate multi-CAV intelligent cruise control solutions in mixed traffic environments. In addition, the impact of platoon dynamics and time delays, induced by shared wireless communications, data processing, and actuation cannot be ignored. This article investigates the development of a multi-agent deep reinforcement learning (MADRL) controller tailored for CAVs operating within mixed and dynamic traffic scenarios that involve time delays. Firstly, the error dynamics in the discrete-time domain for each subplatoon is derived by considering the time-varying delays and leading vehicle states, and then the optimal CAV cruise control problem is formulated. Subsequently, the partially observable Markov game (POMG) is used to construct the multi-agent environment, and then a centralized training decentralized execution (CTDE) algorithm framework is proposed based on the multi-agent deep deterministic policy gradient (MADDPG) method. Finally, the computational complexity and the influence of delay are analyzed. The simulation results illustrate the effectiveness of the proposed intelligent algorithm.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.