伺服驱动执行机制的无模型通用鲁棒控制与实验验证

Mehdi Heydari Shahna, Jouni Mattila
{"title":"伺服驱动执行机制的无模型通用鲁棒控制与实验验证","authors":"Mehdi Heydari Shahna, Jouni Mattila","doi":"arxiv-2409.11828","DOIUrl":null,"url":null,"abstract":"To advance theoretical solutions and address limitations in modeling complex\nservo-driven actuation systems experiencing high non-linearity and load\ndisturbances, this paper aims to design a practical model-free generic robust\ncontrol (GRC) framework for these mechanisms. This framework is intended to be\napplicable across all actuator systems encompassing electrical, hydraulic, or\npneumatic servomechanisms, while also functioning within complex interactions\namong dynamic components and adhering to control input constraints. In this\nrespect, the state-space model of actuator systems is decomposed into smaller\nsubsystems that incorporate the first principle equation of actuator motion\ndynamics and interactive energy conversion equations. This decomposition\noperates under the assumption that the comprehensive model of the servo-driven\nactuator system and energy conversion, uncertainties, load disturbances, and\ntheir bounds are unknown. Then, the GRC employs subsystem-based adaptive\ncontrol strategies for each state-variant subsystem separately. Despite control\ninput constraints and the unknown interactive system model, the GRC-applied\nactuator mechanism ensures uniform exponential stability and robustness in\ntracking desired motions. It features straightforward implementation,\nexperimentally evaluated by applying it to two industrial applications.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification\",\"authors\":\"Mehdi Heydari Shahna, Jouni Mattila\",\"doi\":\"arxiv-2409.11828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To advance theoretical solutions and address limitations in modeling complex\\nservo-driven actuation systems experiencing high non-linearity and load\\ndisturbances, this paper aims to design a practical model-free generic robust\\ncontrol (GRC) framework for these mechanisms. This framework is intended to be\\napplicable across all actuator systems encompassing electrical, hydraulic, or\\npneumatic servomechanisms, while also functioning within complex interactions\\namong dynamic components and adhering to control input constraints. In this\\nrespect, the state-space model of actuator systems is decomposed into smaller\\nsubsystems that incorporate the first principle equation of actuator motion\\ndynamics and interactive energy conversion equations. This decomposition\\noperates under the assumption that the comprehensive model of the servo-driven\\nactuator system and energy conversion, uncertainties, load disturbances, and\\ntheir bounds are unknown. Then, the GRC employs subsystem-based adaptive\\ncontrol strategies for each state-variant subsystem separately. Despite control\\ninput constraints and the unknown interactive system model, the GRC-applied\\nactuator mechanism ensures uniform exponential stability and robustness in\\ntracking desired motions. It features straightforward implementation,\\nexperimentally evaluated by applying it to two industrial applications.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了推进理论解决方案并解决复杂伺服驱动致动系统建模过程中遇到的高非线性和负载扰动限制,本文旨在为这些机构设计一个实用的无模型通用鲁棒控制(GRC)框架。该框架旨在适用于所有执行器系统,包括电气、液压或气动伺服机构,同时还能在动态组件之间复杂的相互作用中发挥作用,并遵守控制输入约束。因此,执行器系统的状态空间模型被分解为包含执行器运动动力学第一原理方程和交互式能量转换方程的小型子系统。这种分解的前提是伺服驱动致动器系统的综合模型和能量转换、不确定性、负载干扰及其边界都是未知的。然后,GRC 对每个状态变异子系统分别采用基于子系统的自适应控制策略。尽管存在控制输入约束和未知的交互系统模型,GRC 所应用的致动器机制仍能确保均匀的指数稳定性和鲁棒性,从而跟踪所需的运动。它的特点是实施简单,并在两个工业应用中进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
To advance theoretical solutions and address limitations in modeling complex servo-driven actuation systems experiencing high non-linearity and load disturbances, this paper aims to design a practical model-free generic robust control (GRC) framework for these mechanisms. This framework is intended to be applicable across all actuator systems encompassing electrical, hydraulic, or pneumatic servomechanisms, while also functioning within complex interactions among dynamic components and adhering to control input constraints. In this respect, the state-space model of actuator systems is decomposed into smaller subsystems that incorporate the first principle equation of actuator motion dynamics and interactive energy conversion equations. This decomposition operates under the assumption that the comprehensive model of the servo-driven actuator system and energy conversion, uncertainties, load disturbances, and their bounds are unknown. Then, the GRC employs subsystem-based adaptive control strategies for each state-variant subsystem separately. Despite control input constraints and the unknown interactive system model, the GRC-applied actuator mechanism ensures uniform exponential stability and robustness in tracking desired motions. It features straightforward implementation, experimentally evaluated by applying it to two industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信