关于 $${text {PSL}}_2(q)$$ 的交集谱

IF 0.6 3区 数学 Q3 MATHEMATICS
Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra
{"title":"关于 $${text {PSL}}_2(q)$$ 的交集谱","authors":"Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1007/s10801-024-01356-5","DOIUrl":null,"url":null,"abstract":"<p>Given a group <i>G</i> and a subgroup <span>\\(H \\le G\\)</span>, a set <span>\\(\\mathcal {F}\\subset G\\)</span> is called <i>H</i><i>-intersecting</i> if for any <span>\\(g,g' \\in \\mathcal {F}\\)</span>, there exists <span>\\(xH \\in G/H\\)</span> such that <span>\\(gxH=g'xH\\)</span>. The <i>intersection density</i> of the action of <i>G</i> on <i>G</i>/<i>H</i> by (left) multiplication is the rational number <span>\\(\\rho (G,H)\\)</span>, equal to the maximum ratio <span>\\(\\frac{|\\mathcal {F}|}{|H|}\\)</span>, where <span>\\(\\mathcal {F} \\subset G\\)</span> runs through all <i>H</i>-intersecting sets of <i>G</i>. The <i>intersection spectrum</i> of the group <i>G</i> is then defined to be the set </p><span>$$\\begin{aligned} \\sigma (G) := \\left\\{ \\rho (G,H) : H\\le G \\right\\} . \\end{aligned}$$</span><p>It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if <span>\\(\\sigma (G) = \\{1\\}\\)</span>, then <i>G</i> is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to <span>\\(\\sigma (G)\\)</span>, whenever <i>G</i> is non-solvable. In this paper, we study the intersection spectrum of the linear group <span>\\({\\text {PSL}}_2(q)\\)</span>. It is shown that <span>\\(2 \\in \\sigma \\left( {\\text {PSL}}_2(q)\\right) \\)</span>, for any prime power <span>\\(q\\equiv 3 \\pmod 4\\)</span>. Moreover, when <span>\\(q\\equiv 1 \\pmod 4\\)</span>, it is proved that <span>\\(\\rho ({\\text {PSL}}_2(q),H)=1\\)</span>, for any odd index subgroup <i>H</i> (containing <span>\\({\\mathbb {F}}_q\\)</span>) of the Borel subgroup (isomorphic to <span>\\({\\mathbb {F}}_q\\rtimes {\\mathbb {Z}}_{\\frac{q-1}{2}}\\)</span>) consisting of all upper triangular matrices.\n</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"52 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the intersection spectrum of $${\\\\text {PSL}}_2(q)$$\",\"authors\":\"Angelot Behajaina, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra\",\"doi\":\"10.1007/s10801-024-01356-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a group <i>G</i> and a subgroup <span>\\\\(H \\\\le G\\\\)</span>, a set <span>\\\\(\\\\mathcal {F}\\\\subset G\\\\)</span> is called <i>H</i><i>-intersecting</i> if for any <span>\\\\(g,g' \\\\in \\\\mathcal {F}\\\\)</span>, there exists <span>\\\\(xH \\\\in G/H\\\\)</span> such that <span>\\\\(gxH=g'xH\\\\)</span>. The <i>intersection density</i> of the action of <i>G</i> on <i>G</i>/<i>H</i> by (left) multiplication is the rational number <span>\\\\(\\\\rho (G,H)\\\\)</span>, equal to the maximum ratio <span>\\\\(\\\\frac{|\\\\mathcal {F}|}{|H|}\\\\)</span>, where <span>\\\\(\\\\mathcal {F} \\\\subset G\\\\)</span> runs through all <i>H</i>-intersecting sets of <i>G</i>. The <i>intersection spectrum</i> of the group <i>G</i> is then defined to be the set </p><span>$$\\\\begin{aligned} \\\\sigma (G) := \\\\left\\\\{ \\\\rho (G,H) : H\\\\le G \\\\right\\\\} . \\\\end{aligned}$$</span><p>It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if <span>\\\\(\\\\sigma (G) = \\\\{1\\\\}\\\\)</span>, then <i>G</i> is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to <span>\\\\(\\\\sigma (G)\\\\)</span>, whenever <i>G</i> is non-solvable. In this paper, we study the intersection spectrum of the linear group <span>\\\\({\\\\text {PSL}}_2(q)\\\\)</span>. It is shown that <span>\\\\(2 \\\\in \\\\sigma \\\\left( {\\\\text {PSL}}_2(q)\\\\right) \\\\)</span>, for any prime power <span>\\\\(q\\\\equiv 3 \\\\pmod 4\\\\)</span>. Moreover, when <span>\\\\(q\\\\equiv 1 \\\\pmod 4\\\\)</span>, it is proved that <span>\\\\(\\\\rho ({\\\\text {PSL}}_2(q),H)=1\\\\)</span>, for any odd index subgroup <i>H</i> (containing <span>\\\\({\\\\mathbb {F}}_q\\\\)</span>) of the Borel subgroup (isomorphic to <span>\\\\({\\\\mathbb {F}}_q\\\\rtimes {\\\\mathbb {Z}}_{\\\\frac{q-1}{2}}\\\\)</span>) consisting of all upper triangular matrices.\\n</p>\",\"PeriodicalId\":14926,\"journal\":{\"name\":\"Journal of Algebraic Combinatorics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-024-01356-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01356-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个群 G 和一个子群 (H /le G),如果对于任意的 (g,g'),存在 (xH /in G/H)使得 (gxH=g'xH/),那么这个集合 (\mathcal {F}\subset G)就叫做 H 交集。通过(左)乘法,G作用于G/H的交密度是有理数\(\rho (G,H)\),等于最大比率\(\frac{|\mathcal {F}|}{|H|}\), 其中\(\mathcal {F} \子集 G\) 贯穿G的所有H交集。\sigma (G) := \left\{ \rho (G,H) :Hle G \right\} .\end{aligned}$$Bardestani 和 Mallahi-Karai (J Algebraic Combin, 42(1):111-128, 2015) 证明,如果 \(\sigma (G) = \{1\}\),那么 G 必然是可解的。因此,自然而然产生的问题是,当 G 不可解时,哪些大于 1 的有理数属于 \(\sigma(G)\)。本文研究了线性群 \({\text {PSL}}_2(q)\) 的交集谱。研究表明,对于任意质幂 \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \),对于任意质幂 \(q\equiv 3 \pmod 4\).此外,当 \(q\equiv 1 \pmod 4\) 时,可以证明 \(\rho ({\text {PSL}}_2(q),H)=1\)、对于由所有上三角矩阵组成的波尔子群(与 \({\mathbb {F}_q\rtimes {\mathbb {Z}_{\frac{q-1}{2}} 同构)的任何奇数索引子群 H(包含 \({\mathbb {F}_q\) )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the intersection spectrum of $${\text {PSL}}_2(q)$$

Given a group G and a subgroup \(H \le G\), a set \(\mathcal {F}\subset G\) is called H-intersecting if for any \(g,g' \in \mathcal {F}\), there exists \(xH \in G/H\) such that \(gxH=g'xH\). The intersection density of the action of G on G/H by (left) multiplication is the rational number \(\rho (G,H)\), equal to the maximum ratio \(\frac{|\mathcal {F}|}{|H|}\), where \(\mathcal {F} \subset G\) runs through all H-intersecting sets of G. The intersection spectrum of the group G is then defined to be the set

$$\begin{aligned} \sigma (G) := \left\{ \rho (G,H) : H\le G \right\} . \end{aligned}$$

It was shown by Bardestani and Mallahi-Karai (J Algebraic Combin, 42(1):111–128, 2015) that if \(\sigma (G) = \{1\}\), then G is necessarily solvable. The natural question that arises is, therefore, which rational numbers larger than 1 belong to \(\sigma (G)\), whenever G is non-solvable. In this paper, we study the intersection spectrum of the linear group \({\text {PSL}}_2(q)\). It is shown that \(2 \in \sigma \left( {\text {PSL}}_2(q)\right) \), for any prime power \(q\equiv 3 \pmod 4\). Moreover, when \(q\equiv 1 \pmod 4\), it is proved that \(\rho ({\text {PSL}}_2(q),H)=1\), for any odd index subgroup H (containing \({\mathbb {F}}_q\)) of the Borel subgroup (isomorphic to \({\mathbb {F}}_q\rtimes {\mathbb {Z}}_{\frac{q-1}{2}}\)) consisting of all upper triangular matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics. The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信