下一代卫星系统:基于创新频率重用模式的非正交广播和单播综合服务

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuai Han;Zhiqiang Li;Weixiao Meng;Cheng Li
{"title":"下一代卫星系统:基于创新频率重用模式的非正交广播和单播综合服务","authors":"Shuai Han;Zhiqiang Li;Weixiao Meng;Cheng Li","doi":"10.1109/TBC.2024.3434731","DOIUrl":null,"url":null,"abstract":"The multibeam satellite system is crucial for providing seamless and various information services, such as broadcast and unicast messages. However, catering to the burgeoning number of users within a limited spectrum of resources presents formidable challenges. Therefore, we devise the non-orthogonal broadcast and unicast (NOBU) joint transmission framework using rate-splitting multiple access (RSMA), which leverages non-orthogonal transmission and precoding strategies. Furthermore, amalgamating traditional precoding with frequency reuse techniques, we propose two novel distributed frequency reuse (DFR) and centralized frequency reuse (CFR) strategies. Taking satellite beam gain characteristics and interference tolerance threshold into consideration, we further propose another two expansions of DFR and CFR strategies with innovative inner and outer divisions. For the NOBU joint transmission based on four novel frequency reuse patterns, we maximize the weighted sum rate (WSR). Subsequently, we introduce an improved alternating optimization algorithm, adept at converting intricate non-convex problems into tractable convex counterparts. Simulation outcomes demonstrate that our proposed schemes have significant improvements in WSR performance and are promising for various practical applications.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 4","pages":"1153-1166"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-Gen Satellite System: Integrative Non-Orthogonal Broadcast and Unicast Services Based on Innovative Frequency Reuse Patterns\",\"authors\":\"Shuai Han;Zhiqiang Li;Weixiao Meng;Cheng Li\",\"doi\":\"10.1109/TBC.2024.3434731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multibeam satellite system is crucial for providing seamless and various information services, such as broadcast and unicast messages. However, catering to the burgeoning number of users within a limited spectrum of resources presents formidable challenges. Therefore, we devise the non-orthogonal broadcast and unicast (NOBU) joint transmission framework using rate-splitting multiple access (RSMA), which leverages non-orthogonal transmission and precoding strategies. Furthermore, amalgamating traditional precoding with frequency reuse techniques, we propose two novel distributed frequency reuse (DFR) and centralized frequency reuse (CFR) strategies. Taking satellite beam gain characteristics and interference tolerance threshold into consideration, we further propose another two expansions of DFR and CFR strategies with innovative inner and outer divisions. For the NOBU joint transmission based on four novel frequency reuse patterns, we maximize the weighted sum rate (WSR). Subsequently, we introduce an improved alternating optimization algorithm, adept at converting intricate non-convex problems into tractable convex counterparts. Simulation outcomes demonstrate that our proposed schemes have significant improvements in WSR performance and are promising for various practical applications.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 4\",\"pages\":\"1153-1166\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680415/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680415/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-Gen Satellite System: Integrative Non-Orthogonal Broadcast and Unicast Services Based on Innovative Frequency Reuse Patterns
The multibeam satellite system is crucial for providing seamless and various information services, such as broadcast and unicast messages. However, catering to the burgeoning number of users within a limited spectrum of resources presents formidable challenges. Therefore, we devise the non-orthogonal broadcast and unicast (NOBU) joint transmission framework using rate-splitting multiple access (RSMA), which leverages non-orthogonal transmission and precoding strategies. Furthermore, amalgamating traditional precoding with frequency reuse techniques, we propose two novel distributed frequency reuse (DFR) and centralized frequency reuse (CFR) strategies. Taking satellite beam gain characteristics and interference tolerance threshold into consideration, we further propose another two expansions of DFR and CFR strategies with innovative inner and outer divisions. For the NOBU joint transmission based on four novel frequency reuse patterns, we maximize the weighted sum rate (WSR). Subsequently, we introduce an improved alternating optimization algorithm, adept at converting intricate non-convex problems into tractable convex counterparts. Simulation outcomes demonstrate that our proposed schemes have significant improvements in WSR performance and are promising for various practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信