{"title":"AKR1C1 与 STAT3 相互作用,增加细胞内谷胱甘肽含量,使结肠直肠癌患者对奥沙利铂产生抗药性","authors":"Zhiwen Fu, Tingting Wu, Chen Gao, Lulu Wang, Yu Zhang, Chen Shi","doi":"10.1016/j.apsb.2024.08.031","DOIUrl":null,"url":null,"abstract":"Oxaliplatin (OXA), a platinum-based chemotherapeutic agent, remains a mainstay in first-line treatments for advanced colorectal cancer (CRC). However, the eventual development of OXA resistance represents a significant clinical challenge. In the present study, we demonstrate that the aldo-keto reductase 1C1 (AKR1C1) is overexpressed in CRC cells upon acquisition of OXA resistance, evident in OXA-resistant CRC cell lines. We employed genetic silencing and pharmacological inhibition strategies to establish that suppression of AKR1C1 restores OXA sensitivity. Mechanistically, AKR1C1 interacts with and activates the transcription factor STAT3, which upregulates the glutamate transporter EAAT3, thereby elevating intracellular glutathione levels and conferring OXA resistance. Alantolactone, a potent natural product inhibitor of AKR1C1, effectively reverses this chemoresistance, restricting the growth of OXA-resistant CRC cells both and . Our findings uncover a critical AKR1C1-dependent mechanism behind OXA resistance and propose a promising combinatorial therapeutic strategy to overcome this resistance in CRC.","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AKR1C1 interacts with STAT3 to increase intracellular glutathione and confers resistance to oxaliplatin in colorectal cancer\",\"authors\":\"Zhiwen Fu, Tingting Wu, Chen Gao, Lulu Wang, Yu Zhang, Chen Shi\",\"doi\":\"10.1016/j.apsb.2024.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxaliplatin (OXA), a platinum-based chemotherapeutic agent, remains a mainstay in first-line treatments for advanced colorectal cancer (CRC). However, the eventual development of OXA resistance represents a significant clinical challenge. In the present study, we demonstrate that the aldo-keto reductase 1C1 (AKR1C1) is overexpressed in CRC cells upon acquisition of OXA resistance, evident in OXA-resistant CRC cell lines. We employed genetic silencing and pharmacological inhibition strategies to establish that suppression of AKR1C1 restores OXA sensitivity. Mechanistically, AKR1C1 interacts with and activates the transcription factor STAT3, which upregulates the glutamate transporter EAAT3, thereby elevating intracellular glutathione levels and conferring OXA resistance. Alantolactone, a potent natural product inhibitor of AKR1C1, effectively reverses this chemoresistance, restricting the growth of OXA-resistant CRC cells both and . Our findings uncover a critical AKR1C1-dependent mechanism behind OXA resistance and propose a promising combinatorial therapeutic strategy to overcome this resistance in CRC.\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsb.2024.08.031\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.apsb.2024.08.031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
AKR1C1 interacts with STAT3 to increase intracellular glutathione and confers resistance to oxaliplatin in colorectal cancer
Oxaliplatin (OXA), a platinum-based chemotherapeutic agent, remains a mainstay in first-line treatments for advanced colorectal cancer (CRC). However, the eventual development of OXA resistance represents a significant clinical challenge. In the present study, we demonstrate that the aldo-keto reductase 1C1 (AKR1C1) is overexpressed in CRC cells upon acquisition of OXA resistance, evident in OXA-resistant CRC cell lines. We employed genetic silencing and pharmacological inhibition strategies to establish that suppression of AKR1C1 restores OXA sensitivity. Mechanistically, AKR1C1 interacts with and activates the transcription factor STAT3, which upregulates the glutamate transporter EAAT3, thereby elevating intracellular glutathione levels and conferring OXA resistance. Alantolactone, a potent natural product inhibitor of AKR1C1, effectively reverses this chemoresistance, restricting the growth of OXA-resistant CRC cells both and . Our findings uncover a critical AKR1C1-dependent mechanism behind OXA resistance and propose a promising combinatorial therapeutic strategy to overcome this resistance in CRC.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.