S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
{"title":"利用基础模型在资源受限的边缘网络中实现高效的联合学习","authors":"S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi","doi":"arxiv-2409.09273","DOIUrl":null,"url":null,"abstract":"Recently pre-trained Foundation Models (FMs) have been combined with\nFederated Learning (FL) to improve training of downstream tasks while\npreserving privacy. However, deploying FMs over edge networks with\nresource-constrained Internet of Things (IoT) devices is under-explored. This\npaper proposes a novel framework, namely, Federated Distilling knowledge to\nPrompt (FedD2P), for leveraging the robust representation abilities of a\nvision-language FM without deploying it locally on edge devices. This framework\ndistills the aggregated knowledge of IoT devices to a prompt generator to\nefficiently adapt the frozen FM for downstream tasks. To eliminate the\ndependency on a public dataset, our framework leverages perclass local\nknowledge from IoT devices and linguistic descriptions of classes to train the\nprompt generator. Our experiments on diverse image classification datasets\nCIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the\nbaselines in terms of model performance.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Foundation Models for Efficient Federated Learning in Resource-restricted Edge Networks\",\"authors\":\"S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi\",\"doi\":\"arxiv-2409.09273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently pre-trained Foundation Models (FMs) have been combined with\\nFederated Learning (FL) to improve training of downstream tasks while\\npreserving privacy. However, deploying FMs over edge networks with\\nresource-constrained Internet of Things (IoT) devices is under-explored. This\\npaper proposes a novel framework, namely, Federated Distilling knowledge to\\nPrompt (FedD2P), for leveraging the robust representation abilities of a\\nvision-language FM without deploying it locally on edge devices. This framework\\ndistills the aggregated knowledge of IoT devices to a prompt generator to\\nefficiently adapt the frozen FM for downstream tasks. To eliminate the\\ndependency on a public dataset, our framework leverages perclass local\\nknowledge from IoT devices and linguistic descriptions of classes to train the\\nprompt generator. Our experiments on diverse image classification datasets\\nCIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the\\nbaselines in terms of model performance.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,预训练基础模型(FM)与联合学习(FL)相结合,在保护隐私的同时改进了下游任务的训练。然而,在资源受限的物联网(IoT)设备的边缘网络上部署 FM 还没有得到充分探索。本文提出了一个新颖的框架,即 "知识到提示的联合分馏(FedD2P)",用于利用视觉语言调频的强大表示能力,而无需在边缘设备上进行本地部署。该框架将物联网设备的聚合知识蒸馏到提示生成器中,以便有效地将冻结的调频适应下游任务。为了消除对公共数据集的依赖,我们的框架利用物联网设备的每类本地知识和类的语言描述来训练提示生成器。我们在各种图像分类数据集 CIFAR、OxfordPets、SVHN、EuroSAT 和 DTD 上进行的实验表明,FedD2P 在模型性能方面优于基准。
Leveraging Foundation Models for Efficient Federated Learning in Resource-restricted Edge Networks
Recently pre-trained Foundation Models (FMs) have been combined with
Federated Learning (FL) to improve training of downstream tasks while
preserving privacy. However, deploying FMs over edge networks with
resource-constrained Internet of Things (IoT) devices is under-explored. This
paper proposes a novel framework, namely, Federated Distilling knowledge to
Prompt (FedD2P), for leveraging the robust representation abilities of a
vision-language FM without deploying it locally on edge devices. This framework
distills the aggregated knowledge of IoT devices to a prompt generator to
efficiently adapt the frozen FM for downstream tasks. To eliminate the
dependency on a public dataset, our framework leverages perclass local
knowledge from IoT devices and linguistic descriptions of classes to train the
prompt generator. Our experiments on diverse image classification datasets
CIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the
baselines in terms of model performance.