利用基础模型在资源受限的边缘网络中实现高效的联合学习

S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi
{"title":"利用基础模型在资源受限的边缘网络中实现高效的联合学习","authors":"S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi","doi":"arxiv-2409.09273","DOIUrl":null,"url":null,"abstract":"Recently pre-trained Foundation Models (FMs) have been combined with\nFederated Learning (FL) to improve training of downstream tasks while\npreserving privacy. However, deploying FMs over edge networks with\nresource-constrained Internet of Things (IoT) devices is under-explored. This\npaper proposes a novel framework, namely, Federated Distilling knowledge to\nPrompt (FedD2P), for leveraging the robust representation abilities of a\nvision-language FM without deploying it locally on edge devices. This framework\ndistills the aggregated knowledge of IoT devices to a prompt generator to\nefficiently adapt the frozen FM for downstream tasks. To eliminate the\ndependency on a public dataset, our framework leverages perclass local\nknowledge from IoT devices and linguistic descriptions of classes to train the\nprompt generator. Our experiments on diverse image classification datasets\nCIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the\nbaselines in terms of model performance.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Foundation Models for Efficient Federated Learning in Resource-restricted Edge Networks\",\"authors\":\"S. Kawa Atapour, S. Jamal SeyedMohammadi, S. Mohammad Sheikholeslami, Jamshid Abouei, Konstantinos N. Plataniotis, Arash Mohammadi\",\"doi\":\"arxiv-2409.09273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently pre-trained Foundation Models (FMs) have been combined with\\nFederated Learning (FL) to improve training of downstream tasks while\\npreserving privacy. However, deploying FMs over edge networks with\\nresource-constrained Internet of Things (IoT) devices is under-explored. This\\npaper proposes a novel framework, namely, Federated Distilling knowledge to\\nPrompt (FedD2P), for leveraging the robust representation abilities of a\\nvision-language FM without deploying it locally on edge devices. This framework\\ndistills the aggregated knowledge of IoT devices to a prompt generator to\\nefficiently adapt the frozen FM for downstream tasks. To eliminate the\\ndependency on a public dataset, our framework leverages perclass local\\nknowledge from IoT devices and linguistic descriptions of classes to train the\\nprompt generator. Our experiments on diverse image classification datasets\\nCIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the\\nbaselines in terms of model performance.\",\"PeriodicalId\":501422,\"journal\":{\"name\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Distributed, Parallel, and Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,预训练基础模型(FM)与联合学习(FL)相结合,在保护隐私的同时改进了下游任务的训练。然而,在资源受限的物联网(IoT)设备的边缘网络上部署 FM 还没有得到充分探索。本文提出了一个新颖的框架,即 "知识到提示的联合分馏(FedD2P)",用于利用视觉语言调频的强大表示能力,而无需在边缘设备上进行本地部署。该框架将物联网设备的聚合知识蒸馏到提示生成器中,以便有效地将冻结的调频适应下游任务。为了消除对公共数据集的依赖,我们的框架利用物联网设备的每类本地知识和类的语言描述来训练提示生成器。我们在各种图像分类数据集 CIFAR、OxfordPets、SVHN、EuroSAT 和 DTD 上进行的实验表明,FedD2P 在模型性能方面优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Foundation Models for Efficient Federated Learning in Resource-restricted Edge Networks
Recently pre-trained Foundation Models (FMs) have been combined with Federated Learning (FL) to improve training of downstream tasks while preserving privacy. However, deploying FMs over edge networks with resource-constrained Internet of Things (IoT) devices is under-explored. This paper proposes a novel framework, namely, Federated Distilling knowledge to Prompt (FedD2P), for leveraging the robust representation abilities of a vision-language FM without deploying it locally on edge devices. This framework distills the aggregated knowledge of IoT devices to a prompt generator to efficiently adapt the frozen FM for downstream tasks. To eliminate the dependency on a public dataset, our framework leverages perclass local knowledge from IoT devices and linguistic descriptions of classes to train the prompt generator. Our experiments on diverse image classification datasets CIFAR, OxfordPets, SVHN, EuroSAT, and DTD show that FedD2P outperforms the baselines in terms of model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信