基于社区的事实核查减少了误导性帖子在社交媒体上的传播

Yuwei Chuai, Moritz Pilarski, Thomas Renault, David Restrepo-Amariles, Aurore Troussel-Clément, Gabriele Lenzini, Nicolas Pröllochs
{"title":"基于社区的事实核查减少了误导性帖子在社交媒体上的传播","authors":"Yuwei Chuai, Moritz Pilarski, Thomas Renault, David Restrepo-Amariles, Aurore Troussel-Clément, Gabriele Lenzini, Nicolas Pröllochs","doi":"arxiv-2409.08781","DOIUrl":null,"url":null,"abstract":"Community-based fact-checking is a promising approach to verify social media\ncontent and correct misleading posts at scale. Yet, causal evidence regarding\nits effectiveness in reducing the spread of misinformation on social media is\nmissing. Here, we performed a large-scale empirical study to analyze whether\ncommunity notes reduce the spread of misleading posts on X. Using a\nDifference-in-Differences design and repost time series data for N=237,677\n(community fact-checked) cascades that had been reposted more than 431 million\ntimes, we found that exposing users to community notes reduced the spread of\nmisleading posts by, on average, 62.0%. Furthermore, community notes increased\nthe odds that users delete their misleading posts by 103.4%. However, our\nfindings also suggest that community notes might be too slow to intervene in\nthe early (and most viral) stage of the diffusion. Our work offers important\nimplications to enhance the effectiveness of community-based fact-checking\napproaches on social media.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Community-based fact-checking reduces the spread of misleading posts on social media\",\"authors\":\"Yuwei Chuai, Moritz Pilarski, Thomas Renault, David Restrepo-Amariles, Aurore Troussel-Clément, Gabriele Lenzini, Nicolas Pröllochs\",\"doi\":\"arxiv-2409.08781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community-based fact-checking is a promising approach to verify social media\\ncontent and correct misleading posts at scale. Yet, causal evidence regarding\\nits effectiveness in reducing the spread of misinformation on social media is\\nmissing. Here, we performed a large-scale empirical study to analyze whether\\ncommunity notes reduce the spread of misleading posts on X. Using a\\nDifference-in-Differences design and repost time series data for N=237,677\\n(community fact-checked) cascades that had been reposted more than 431 million\\ntimes, we found that exposing users to community notes reduced the spread of\\nmisleading posts by, on average, 62.0%. Furthermore, community notes increased\\nthe odds that users delete their misleading posts by 103.4%. However, our\\nfindings also suggest that community notes might be too slow to intervene in\\nthe early (and most viral) stage of the diffusion. Our work offers important\\nimplications to enhance the effectiveness of community-based fact-checking\\napproaches on social media.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于社区的事实核查是验证社交媒体内容和大规模纠正误导性帖子的一种很有前途的方法。然而,有关其在减少社交媒体上错误信息传播方面的有效性的因果证据还很缺乏。在此,我们进行了一项大规模的实证研究,分析社区注释是否减少了 X 上误导性帖子的传播。我们使用了差分法设计和 N=237,677 个(社区事实核查)级联的转贴时间序列数据,这些级联的转贴次数超过了 4.31 亿次,我们发现,让用户接触社区注释平均减少了 62.0% 的误导性帖子的传播。此外,社区注释还使用户删除其误导性帖子的几率提高了 103.4%。然而,我们的研究结果也表明,社区注释可能过于缓慢,无法在传播的早期(也是病毒最猖獗的阶段)进行干预。我们的工作为提高社交媒体上基于社区的事实核查方法的有效性提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Community-based fact-checking reduces the spread of misleading posts on social media
Community-based fact-checking is a promising approach to verify social media content and correct misleading posts at scale. Yet, causal evidence regarding its effectiveness in reducing the spread of misinformation on social media is missing. Here, we performed a large-scale empirical study to analyze whether community notes reduce the spread of misleading posts on X. Using a Difference-in-Differences design and repost time series data for N=237,677 (community fact-checked) cascades that had been reposted more than 431 million times, we found that exposing users to community notes reduced the spread of misleading posts by, on average, 62.0%. Furthermore, community notes increased the odds that users delete their misleading posts by 103.4%. However, our findings also suggest that community notes might be too slow to intervene in the early (and most viral) stage of the diffusion. Our work offers important implications to enhance the effectiveness of community-based fact-checking approaches on social media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信