大规模技能匹配:自由职业者-项目对齐,实现高效多语言候选人检索

Warren Jouanneau, Marc Palyart, Emma Jouffroy
{"title":"大规模技能匹配:自由职业者-项目对齐,实现高效多语言候选人检索","authors":"Warren Jouanneau, Marc Palyart, Emma Jouffroy","doi":"arxiv-2409.12097","DOIUrl":null,"url":null,"abstract":"Finding the perfect match between a job proposal and a set of freelancers is\nnot an easy task to perform at scale, especially in multiple languages. In this\npaper, we propose a novel neural retriever architecture that tackles this\nproblem in a multilingual setting. Our method encodes project descriptions and\nfreelancer profiles by leveraging pre-trained multilingual language models. The\nlatter are used as backbone for a custom transformer architecture that aims to\nkeep the structure of the profiles and project. This model is trained with a\ncontrastive loss on historical data. Thanks to several experiments, we show\nthat this approach effectively captures skill matching similarity and\nfacilitates efficient matching, outperforming traditional methods.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skill matching at scale: freelancer-project alignment for efficient multilingual candidate retrieval\",\"authors\":\"Warren Jouanneau, Marc Palyart, Emma Jouffroy\",\"doi\":\"arxiv-2409.12097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding the perfect match between a job proposal and a set of freelancers is\\nnot an easy task to perform at scale, especially in multiple languages. In this\\npaper, we propose a novel neural retriever architecture that tackles this\\nproblem in a multilingual setting. Our method encodes project descriptions and\\nfreelancer profiles by leveraging pre-trained multilingual language models. The\\nlatter are used as backbone for a custom transformer architecture that aims to\\nkeep the structure of the profiles and project. This model is trained with a\\ncontrastive loss on historical data. Thanks to several experiments, we show\\nthat this approach effectively captures skill matching similarity and\\nfacilitates efficient matching, outperforming traditional methods.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在一份工作提案和一组自由职业者之间找到完美的匹配并不是一件容易的事情,尤其是在多语言环境下。在本文中,我们提出了一种新颖的神经检索器架构,可以在多语言环境中解决这一问题。我们的方法通过利用预先训练好的多语言语言模型,对项目描述和自由职业者简介进行编码。这些模型被用作定制转换器架构的骨干,旨在保持配置文件和项目的结构。该模型在历史数据上进行了对比损失训练。通过多次实验,我们证明这种方法能有效捕捉技能匹配的相似性,并促进高效匹配,其性能优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skill matching at scale: freelancer-project alignment for efficient multilingual candidate retrieval
Finding the perfect match between a job proposal and a set of freelancers is not an easy task to perform at scale, especially in multiple languages. In this paper, we propose a novel neural retriever architecture that tackles this problem in a multilingual setting. Our method encodes project descriptions and freelancer profiles by leveraging pre-trained multilingual language models. The latter are used as backbone for a custom transformer architecture that aims to keep the structure of the profiles and project. This model is trained with a contrastive loss on historical data. Thanks to several experiments, we show that this approach effectively captures skill matching similarity and facilitates efficient matching, outperforming traditional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信