{"title":"涉及纵向运动、动力总成和空调系统优化的协同能量优化控制","authors":"Yanbei Zhang, Mingliang Wei, Meilin Ren, Chongfan Liu, Mengwei Han, Jingyu Zhu","doi":"10.1177/09544070241272899","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the optimal control strategies for the longitudinal control, powertrain, and air conditioning (A/C) system of connected four-wheel hub-drive electric vehicles (EVs). A hierarchical control framework is developed to enhance the energy economy of the vehicle. Real-time connected information is utilized in the upper layer to determine the travel mode. Then, a multi-objective motion planning system (MOMPS) is proposed to plan the optimal acceleration trajectory. In the lower layer, an offline global optimization approach is employed to find the torque combinations that minimize the total power loss. The proposed A/C controller operates based on the bi-level model predictive control (Bi-level MPC) algorithm. A novel prediction model is developed to enable the A/C system to decrease energy consumption by leveraging the speed of the vehicle. The performance of the MOMPS is evaluated using urban test road data, demonstrating that the MOMPS can balance multiple objectives compared to global dynamic programing (Global DP) and the intelligent driver model (IDM). In addition, the proposed torque distribution strategy results in a 4.98% energy-savings rate through comparison with the even torque distribution strategy. Moreover, the A/C controller proposed in this paper can optimize energy consumption by 13.57% compared to a baseline strategy that maintains a constant setting.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative energy optimal control involving optimization of longitudinal motion, powertrain, and air conditioning systems\",\"authors\":\"Yanbei Zhang, Mingliang Wei, Meilin Ren, Chongfan Liu, Mengwei Han, Jingyu Zhu\",\"doi\":\"10.1177/09544070241272899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the optimal control strategies for the longitudinal control, powertrain, and air conditioning (A/C) system of connected four-wheel hub-drive electric vehicles (EVs). A hierarchical control framework is developed to enhance the energy economy of the vehicle. Real-time connected information is utilized in the upper layer to determine the travel mode. Then, a multi-objective motion planning system (MOMPS) is proposed to plan the optimal acceleration trajectory. In the lower layer, an offline global optimization approach is employed to find the torque combinations that minimize the total power loss. The proposed A/C controller operates based on the bi-level model predictive control (Bi-level MPC) algorithm. A novel prediction model is developed to enable the A/C system to decrease energy consumption by leveraging the speed of the vehicle. The performance of the MOMPS is evaluated using urban test road data, demonstrating that the MOMPS can balance multiple objectives compared to global dynamic programing (Global DP) and the intelligent driver model (IDM). In addition, the proposed torque distribution strategy results in a 4.98% energy-savings rate through comparison with the even torque distribution strategy. Moreover, the A/C controller proposed in this paper can optimize energy consumption by 13.57% compared to a baseline strategy that maintains a constant setting.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241272899\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241272899","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cooperative energy optimal control involving optimization of longitudinal motion, powertrain, and air conditioning systems
This paper is concerned with the optimal control strategies for the longitudinal control, powertrain, and air conditioning (A/C) system of connected four-wheel hub-drive electric vehicles (EVs). A hierarchical control framework is developed to enhance the energy economy of the vehicle. Real-time connected information is utilized in the upper layer to determine the travel mode. Then, a multi-objective motion planning system (MOMPS) is proposed to plan the optimal acceleration trajectory. In the lower layer, an offline global optimization approach is employed to find the torque combinations that minimize the total power loss. The proposed A/C controller operates based on the bi-level model predictive control (Bi-level MPC) algorithm. A novel prediction model is developed to enable the A/C system to decrease energy consumption by leveraging the speed of the vehicle. The performance of the MOMPS is evaluated using urban test road data, demonstrating that the MOMPS can balance multiple objectives compared to global dynamic programing (Global DP) and the intelligent driver model (IDM). In addition, the proposed torque distribution strategy results in a 4.98% energy-savings rate through comparison with the even torque distribution strategy. Moreover, the A/C controller proposed in this paper can optimize energy consumption by 13.57% compared to a baseline strategy that maintains a constant setting.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.