重新审视无向图上的局部 PageRank 估算:简单与最优

Hanzhi Wang
{"title":"重新审视无向图上的局部 PageRank 估算:简单与最优","authors":"Hanzhi Wang","doi":"arxiv-2409.08978","DOIUrl":null,"url":null,"abstract":"We propose a simple and optimal algorithm, BackMC, for local PageRank\nestimation in undirected graphs: given an arbitrary target node $t$ in an\nundirected graph $G$ comprising $n$ nodes and $m$ edges, BackMC accurately\nestimates the PageRank score of node $t$ while assuring a small relative error\nand a high success probability. The worst-case computational complexity of\nBackMC is upper bounded by $O\\left(\\frac{1}{d_{\\mathrm{min}}}\\cdot\n\\min\\left(d_t, m^{1/2}\\right)\\right)$, where $d_{\\mathrm{min}}$ denotes the\nminimum degree of $G$, and $d_t$ denotes the degree of $t$, respectively.\nCompared to the previously best upper bound of $ O\\left(\\log{n}\\cdot\n\\min\\left(d_t, m^{1/2}\\right)\\right)$ (VLDB '23), which is derived from a\nsignificantly more complex algorithm and analysis, our BackMC improves the\ncomputational complexity for this problem by a factor of\n$\\Theta\\left(\\frac{\\log{n}}{d_{\\mathrm{min}}}\\right)$ with a much simpler\nalgorithm. Furthermore, we establish a matching lower bound of\n$\\Omega\\left(\\frac{1}{d_{\\mathrm{min}}}\\cdot \\min\\left(d_t,\nm^{1/2}\\right)\\right)$ for any algorithm that attempts to solve the problem of\nlocal PageRank estimation, demonstrating the theoretical optimality of our\nBackMC. We conduct extensive experiments on various large-scale real-world and\nsynthetic graphs, where BackMC consistently shows superior performance.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting Local PageRank Estimation on Undirected Graphs: Simple and Optimal\",\"authors\":\"Hanzhi Wang\",\"doi\":\"arxiv-2409.08978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple and optimal algorithm, BackMC, for local PageRank\\nestimation in undirected graphs: given an arbitrary target node $t$ in an\\nundirected graph $G$ comprising $n$ nodes and $m$ edges, BackMC accurately\\nestimates the PageRank score of node $t$ while assuring a small relative error\\nand a high success probability. The worst-case computational complexity of\\nBackMC is upper bounded by $O\\\\left(\\\\frac{1}{d_{\\\\mathrm{min}}}\\\\cdot\\n\\\\min\\\\left(d_t, m^{1/2}\\\\right)\\\\right)$, where $d_{\\\\mathrm{min}}$ denotes the\\nminimum degree of $G$, and $d_t$ denotes the degree of $t$, respectively.\\nCompared to the previously best upper bound of $ O\\\\left(\\\\log{n}\\\\cdot\\n\\\\min\\\\left(d_t, m^{1/2}\\\\right)\\\\right)$ (VLDB '23), which is derived from a\\nsignificantly more complex algorithm and analysis, our BackMC improves the\\ncomputational complexity for this problem by a factor of\\n$\\\\Theta\\\\left(\\\\frac{\\\\log{n}}{d_{\\\\mathrm{min}}}\\\\right)$ with a much simpler\\nalgorithm. Furthermore, we establish a matching lower bound of\\n$\\\\Omega\\\\left(\\\\frac{1}{d_{\\\\mathrm{min}}}\\\\cdot \\\\min\\\\left(d_t,\\nm^{1/2}\\\\right)\\\\right)$ for any algorithm that attempts to solve the problem of\\nlocal PageRank estimation, demonstrating the theoretical optimality of our\\nBackMC. We conduct extensive experiments on various large-scale real-world and\\nsynthetic graphs, where BackMC consistently shows superior performance.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种用于无向图中局部 PageRank 估算的简单且最优的算法 BackMC:在由 $n$ 节点和 $m$ 边组成的无向图 $G$ 中给定一个任意目标节点 $t$,BackMC 可以准确地估算出节点 $t$ 的 PageRank 得分,同时保证较小的相对误差和较高的成功概率。BackMC最坏情况下的计算复杂度上限为$O\left(\frac{1}{d_{\mathrm{min}}}\cdot\min\left(d_t, m^{1/2}\right)\right)$,其中$d_{\mathrm{min}}$分别表示$G$的最小度数,$d_t$表示$t$的度数。与之前的最佳上限 $ O\left(\log{n}\cdot\minleft(d_t, m^{1/2}\right)\right)$ (VLDB '23)相比,我们的算法和分析要复杂得多、而我们的 BackMC 用一种简单得多的算法,将这个问题的计算复杂度提高了$\ft(\frac\{log{n}}{d_{\mathrm{min}}\right)$。此外,我们还为任何试图解决本地 PageRank 估计问题的算法建立了一个匹配的下限:$Omega/left(\frac{1}{d_{\mathrm{min}}}\cdot \min\left(d_t,m^{1/2}\right)\right)$ ,这证明了我们的算法在理论上是最优的。我们在各种大规模真实图和合成图上进行了广泛的实验,BackMC 始终表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Local PageRank Estimation on Undirected Graphs: Simple and Optimal
We propose a simple and optimal algorithm, BackMC, for local PageRank estimation in undirected graphs: given an arbitrary target node $t$ in an undirected graph $G$ comprising $n$ nodes and $m$ edges, BackMC accurately estimates the PageRank score of node $t$ while assuring a small relative error and a high success probability. The worst-case computational complexity of BackMC is upper bounded by $O\left(\frac{1}{d_{\mathrm{min}}}\cdot \min\left(d_t, m^{1/2}\right)\right)$, where $d_{\mathrm{min}}$ denotes the minimum degree of $G$, and $d_t$ denotes the degree of $t$, respectively. Compared to the previously best upper bound of $ O\left(\log{n}\cdot \min\left(d_t, m^{1/2}\right)\right)$ (VLDB '23), which is derived from a significantly more complex algorithm and analysis, our BackMC improves the computational complexity for this problem by a factor of $\Theta\left(\frac{\log{n}}{d_{\mathrm{min}}}\right)$ with a much simpler algorithm. Furthermore, we establish a matching lower bound of $\Omega\left(\frac{1}{d_{\mathrm{min}}}\cdot \min\left(d_t, m^{1/2}\right)\right)$ for any algorithm that attempts to solve the problem of local PageRank estimation, demonstrating the theoretical optimality of our BackMC. We conduct extensive experiments on various large-scale real-world and synthetic graphs, where BackMC consistently shows superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信