子集和分布的选择性算法处理

Nick Dawes
{"title":"子集和分布的选择性算法处理","authors":"Nick Dawes","doi":"arxiv-2409.11076","DOIUrl":null,"url":null,"abstract":"The efficiency of exact subset sum problem algorithms which compute\nindividual subset sums is defined as $e=min(T/z, 1)$, where $z$ is the number\nof subset sums computed. $e$ is related to these algorithms' computational\ncomplexity. This system maps the sums into $kn$ bins to select its most\nefficient algorithm for each bin for each input value. These algorithms include\nadditive, subtractive and repeated value dynamic programming. Cases which would\notherwise be processed inefficiently (eg: all even values) are handled by\nmodular arithmetic and by dynamically partioning the input values. The system's\nexperimentally validated efficiency corresponds to O(max($T$, $n^2$)) with\nspace complexity O(max($T$, $n$)), for $k=2$.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective algorithm processing of subset sum distributions\",\"authors\":\"Nick Dawes\",\"doi\":\"arxiv-2409.11076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of exact subset sum problem algorithms which compute\\nindividual subset sums is defined as $e=min(T/z, 1)$, where $z$ is the number\\nof subset sums computed. $e$ is related to these algorithms' computational\\ncomplexity. This system maps the sums into $kn$ bins to select its most\\nefficient algorithm for each bin for each input value. These algorithms include\\nadditive, subtractive and repeated value dynamic programming. Cases which would\\notherwise be processed inefficiently (eg: all even values) are handled by\\nmodular arithmetic and by dynamically partioning the input values. The system's\\nexperimentally validated efficiency corresponds to O(max($T$, $n^2$)) with\\nspace complexity O(max($T$, $n$)), for $k=2$.\",\"PeriodicalId\":501525,\"journal\":{\"name\":\"arXiv - CS - Data Structures and Algorithms\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Data Structures and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算单个子集和的精确子集和问题算法的效率定义为 $e=min(T/z,1)$,其中 $z$ 是计算的子集和的个数。e$与这些算法的计算复杂度有关。该系统将总和映射到 $kn$ 分段中,为每个输入值的每个分段选择最有效的算法。这些算法包括加法、减法和重复值动态编程。通过模数运算和动态分割输入值,可以处理那些处理效率低下的情况(例如:所有偶数值)。经实验验证,该系统的效率相当于 O(max($T$,$n^2$)),空间复杂度为 O(max($T$,$n$)),适用于 $k=2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selective algorithm processing of subset sum distributions
The efficiency of exact subset sum problem algorithms which compute individual subset sums is defined as $e=min(T/z, 1)$, where $z$ is the number of subset sums computed. $e$ is related to these algorithms' computational complexity. This system maps the sums into $kn$ bins to select its most efficient algorithm for each bin for each input value. These algorithms include additive, subtractive and repeated value dynamic programming. Cases which would otherwise be processed inefficiently (eg: all even values) are handled by modular arithmetic and by dynamically partioning the input values. The system's experimentally validated efficiency corresponds to O(max($T$, $n^2$)) with space complexity O(max($T$, $n$)), for $k=2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信