采用非局部弛豫时间近似的自旋动力学理论

Nora Weickgenannt, Jean-Paul Blaizot
{"title":"采用非局部弛豫时间近似的自旋动力学理论","authors":"Nora Weickgenannt, Jean-Paul Blaizot","doi":"arxiv-2409.11045","DOIUrl":null,"url":null,"abstract":"We present a novel relaxation time approximation for kinetic theory with spin\nwhich takes into account the nonlocality of particle collisions. In particular,\nit models the property of the microscopic nonlocal collision term to vanish in\nglobal, but not in local equilibrium. We study the asymptotic distribution\nfunction obtained as the solution of the Boltzmann equation within the nonlocal\nrelaxation time approximation in the limit of small gradients and short\nrelaxation time. We show that the resulting polarization agrees with the one\nobtained from the Zubarev formalism for a certain value of a coefficient that\ndetermines the time scale on which orbital angular momentum is converted into\nspin. This coefficient can be identified with a parameter related to the pseudo\ngauge choice in the Zubarev formalism. Finally, we demonstrate how the nonlocal\ncollision term generates polarization from vorticity by studying a\nnonrelativistic rotating cylinder both from kinetic and hydrodynamic\napproaches, which are shown to be equivalent in this example.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin kinetic theory with a nonlocal relaxation time approximation\",\"authors\":\"Nora Weickgenannt, Jean-Paul Blaizot\",\"doi\":\"arxiv-2409.11045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel relaxation time approximation for kinetic theory with spin\\nwhich takes into account the nonlocality of particle collisions. In particular,\\nit models the property of the microscopic nonlocal collision term to vanish in\\nglobal, but not in local equilibrium. We study the asymptotic distribution\\nfunction obtained as the solution of the Boltzmann equation within the nonlocal\\nrelaxation time approximation in the limit of small gradients and short\\nrelaxation time. We show that the resulting polarization agrees with the one\\nobtained from the Zubarev formalism for a certain value of a coefficient that\\ndetermines the time scale on which orbital angular momentum is converted into\\nspin. This coefficient can be identified with a parameter related to the pseudo\\ngauge choice in the Zubarev formalism. Finally, we demonstrate how the nonlocal\\ncollision term generates polarization from vorticity by studying a\\nnonrelativistic rotating cylinder both from kinetic and hydrodynamic\\napproaches, which are shown to be equivalent in this example.\",\"PeriodicalId\":501573,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的自旋动力学理论弛豫时间近似,它考虑到了粒子碰撞的非局域性。特别是,它模拟了微观非局部碰撞项在全局平衡时消失而在局部平衡时不消失的特性。我们研究了在小梯度和短松弛时间的限制下,在非局部松弛时间近似的波尔兹曼方程解中得到的渐近分布函数。我们证明,在决定轨道角动量转化为自旋的时间尺度的某一系数值上,所得到的极化与祖巴列夫形式主义得到的极化一致。这个系数可以与祖巴列夫形式主义中与伪量规选择有关的参数相识别。最后,我们通过动力学和流体力学方法研究一个非相对论旋转圆柱体,证明非局部碰撞项如何从涡度产生极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin kinetic theory with a nonlocal relaxation time approximation
We present a novel relaxation time approximation for kinetic theory with spin which takes into account the nonlocality of particle collisions. In particular, it models the property of the microscopic nonlocal collision term to vanish in global, but not in local equilibrium. We study the asymptotic distribution function obtained as the solution of the Boltzmann equation within the nonlocal relaxation time approximation in the limit of small gradients and short relaxation time. We show that the resulting polarization agrees with the one obtained from the Zubarev formalism for a certain value of a coefficient that determines the time scale on which orbital angular momentum is converted into spin. This coefficient can be identified with a parameter related to the pseudo gauge choice in the Zubarev formalism. Finally, we demonstrate how the nonlocal collision term generates polarization from vorticity by studying a nonrelativistic rotating cylinder both from kinetic and hydrodynamic approaches, which are shown to be equivalent in this example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信