Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu
{"title":"MAISI:用于合成成像的医学人工智能","authors":"Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu","doi":"arxiv-2409.11169","DOIUrl":null,"url":null,"abstract":"Medical imaging analysis faces challenges such as data scarcity, high\nannotation costs, and privacy concerns. This paper introduces the Medical AI\nfor Synthetic Imaging (MAISI), an innovative approach using the diffusion model\nto generate synthetic 3D computed tomography (CT) images to address those\nchallenges. MAISI leverages the foundation volume compression network and the\nlatent diffusion model to produce high-resolution CT images (up to a landmark\nvolume dimension of 512 x 512 x 768 ) with flexible volume dimensions and voxel\nspacing. By incorporating ControlNet, MAISI can process organ segmentation,\nincluding 127 anatomical structures, as additional conditions and enables the\ngeneration of accurately annotated synthetic images that can be used for\nvarious downstream tasks. Our experiment results show that MAISI's capabilities\nin generating realistic, anatomically accurate images for diverse regions and\nconditions reveal its promising potential to mitigate challenges using\nsynthetic data.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAISI: Medical AI for Synthetic Imaging\",\"authors\":\"Pengfei Guo, Can Zhao, Dong Yang, Ziyue Xu, Vishwesh Nath, Yucheng Tang, Benjamin Simon, Mason Belue, Stephanie Harmon, Baris Turkbey, Daguang Xu\",\"doi\":\"arxiv-2409.11169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical imaging analysis faces challenges such as data scarcity, high\\nannotation costs, and privacy concerns. This paper introduces the Medical AI\\nfor Synthetic Imaging (MAISI), an innovative approach using the diffusion model\\nto generate synthetic 3D computed tomography (CT) images to address those\\nchallenges. MAISI leverages the foundation volume compression network and the\\nlatent diffusion model to produce high-resolution CT images (up to a landmark\\nvolume dimension of 512 x 512 x 768 ) with flexible volume dimensions and voxel\\nspacing. By incorporating ControlNet, MAISI can process organ segmentation,\\nincluding 127 anatomical structures, as additional conditions and enables the\\ngeneration of accurately annotated synthetic images that can be used for\\nvarious downstream tasks. Our experiment results show that MAISI's capabilities\\nin generating realistic, anatomically accurate images for diverse regions and\\nconditions reveal its promising potential to mitigate challenges using\\nsynthetic data.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
医学影像分析面临着数据稀缺、标注成本高和隐私问题等挑战。本文介绍了医学人工智能合成成像(MAISI),这是一种利用扩散模型生成合成三维计算机断层扫描(CT)图像以应对这些挑战的创新方法。MAISI 利用基础容积压缩网络和恒定扩散模型,以灵活的容积尺寸和体素间距生成高分辨率 CT 图像(最大地标容积尺寸为 512 x 512 x 768)。通过结合 ControlNet,MAISI 可以将器官分割(包括 127 个解剖结构)作为附加条件进行处理,并生成可用于各种下游任务的精确注释合成图像。我们的实验结果表明,MAISI 能够为不同区域和条件生成逼真、解剖准确的图像,这揭示了它在减轻合成数据挑战方面的巨大潜力。
Medical imaging analysis faces challenges such as data scarcity, high
annotation costs, and privacy concerns. This paper introduces the Medical AI
for Synthetic Imaging (MAISI), an innovative approach using the diffusion model
to generate synthetic 3D computed tomography (CT) images to address those
challenges. MAISI leverages the foundation volume compression network and the
latent diffusion model to produce high-resolution CT images (up to a landmark
volume dimension of 512 x 512 x 768 ) with flexible volume dimensions and voxel
spacing. By incorporating ControlNet, MAISI can process organ segmentation,
including 127 anatomical structures, as additional conditions and enables the
generation of accurately annotated synthetic images that can be used for
various downstream tasks. Our experiment results show that MAISI's capabilities
in generating realistic, anatomically accurate images for diverse regions and
conditions reveal its promising potential to mitigate challenges using
synthetic data.