基于边缘去噪的图像压缩

Ryugo Morita, Hitoshi Nishimura, Ko Watanabe, Andreas Dengel, Jinjia Zhou
{"title":"基于边缘去噪的图像压缩","authors":"Ryugo Morita, Hitoshi Nishimura, Ko Watanabe, Andreas Dengel, Jinjia Zhou","doi":"arxiv-2409.10978","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning-based image compression, particularly through\ngenerative models, has emerged as a pivotal area of research. Despite\nsignificant advancements, challenges such as diminished sharpness and quality\nin reconstructed images, learning inefficiencies due to mode collapse, and data\nloss during transmission persist. To address these issues, we propose a novel\ncompression model that incorporates a denoising step with diffusion models,\nsignificantly enhancing image reconstruction fidelity by sub-information(e.g.,\nedge and depth) from leveraging latent space. Empirical experiments demonstrate\nthat our model achieves superior or comparable results in terms of image\nquality and compression efficiency when measured against the existing models.\nNotably, our model excels in scenarios of partial image loss or excessive noise\nby introducing an edge estimation network to preserve the integrity of\nreconstructed images, offering a robust solution to the current limitations of\nimage compression.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge-based Denoising Image Compression\",\"authors\":\"Ryugo Morita, Hitoshi Nishimura, Ko Watanabe, Andreas Dengel, Jinjia Zhou\",\"doi\":\"arxiv-2409.10978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep learning-based image compression, particularly through\\ngenerative models, has emerged as a pivotal area of research. Despite\\nsignificant advancements, challenges such as diminished sharpness and quality\\nin reconstructed images, learning inefficiencies due to mode collapse, and data\\nloss during transmission persist. To address these issues, we propose a novel\\ncompression model that incorporates a denoising step with diffusion models,\\nsignificantly enhancing image reconstruction fidelity by sub-information(e.g.,\\nedge and depth) from leveraging latent space. Empirical experiments demonstrate\\nthat our model achieves superior or comparable results in terms of image\\nquality and compression efficiency when measured against the existing models.\\nNotably, our model excels in scenarios of partial image loss or excessive noise\\nby introducing an edge estimation network to preserve the integrity of\\nreconstructed images, offering a robust solution to the current limitations of\\nimage compression.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于深度学习的图像压缩,特别是通过生成模型进行的压缩,已成为一个重要的研究领域。尽管取得了重大进展,但重建图像的清晰度和质量下降、模式崩溃导致的学习效率低下以及传输过程中的数据丢失等挑战依然存在。为了解决这些问题,我们提出了一种新颖的压缩模型,该模型将去噪步骤与扩散模型相结合,通过利用潜在空间的子信息(如边缘和深度)显著提高了图像重建的保真度。实证实验证明,与现有模型相比,我们的模型在图像质量和压缩效率方面取得了更优或相当的结果。值得注意的是,我们的模型通过引入边缘估计网络来保持重建图像的完整性,从而在部分图像丢失或噪声过大的情况下表现出色,为目前图像压缩的局限性提供了一种稳健的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-based Denoising Image Compression
In recent years, deep learning-based image compression, particularly through generative models, has emerged as a pivotal area of research. Despite significant advancements, challenges such as diminished sharpness and quality in reconstructed images, learning inefficiencies due to mode collapse, and data loss during transmission persist. To address these issues, we propose a novel compression model that incorporates a denoising step with diffusion models, significantly enhancing image reconstruction fidelity by sub-information(e.g., edge and depth) from leveraging latent space. Empirical experiments demonstrate that our model achieves superior or comparable results in terms of image quality and compression efficiency when measured against the existing models. Notably, our model excels in scenarios of partial image loss or excessive noise by introducing an edge estimation network to preserve the integrity of reconstructed images, offering a robust solution to the current limitations of image compression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信